Transformer是由谷歌大脑2017年在论文《Attention is All You Need》中提出的一种序列到序列(Seq2Seq)模型。自提出伊始,该模型便在NLP和CV界大杀四方,多次达到SOTA效果。NLP领域中,我们所熟知的BERT和GPT就是从Transformer中衍生出来的预训练语言模型。
本篇将对Transformer框架进行详细的解读,和大家一起深入理解Transformer的原理和机制。
1. 什么是Transformer?
首先我们先对Transformer来个直观的认识。Transformer出现以前,NLP领域应用基本都是以RNN或LSTM循环处理完成,一个token一个tokrn输入到模型中。模型本身是一种顺序结构,包含token在序列中的位置信息。但是存在了一些问题:
- 会出现梯度消失现象,无法支持长时间序列。
- 句子越靠后的token对结果的影响越大。
- 只能利用上文信息,无法获取下文信息。
- 循环网络逐个token输入,也就是句子有多长就要循环多少遍,计算的效率低。
而Transformer的出现得以解决了上述的一系列问题。
2. Transformer架构
2.1. 宏观层面
首先将Transformer可以看成是一个黑箱操作的序列到序列(seq2seq)模型,输入是单词/字母/图像特征序列,输出是另外一个序列。一个训练好的Transformer模型如下图所示:
在机器翻译中,就是输入一种语言(一连串单词),经Transformer输出另一种语言(一连串单词)。
拆开这个黑箱,可以看到模型本质就是一个Encoder-Decoder结构,由编码组件、解码组件和它们之间的连接组成。
每个Encoders中分别由6层Encoder组成,而每个Decoders中同样也是由6层Decoder组成。
每一层Encoder的结构都是相同的,但是它们的权重参数不同。
每个Encoder里面又分为两层。
- Self-Attention Layer
- Feed Forward Neural Network,前馈神经网络
输入Encoder的文本数据,首先会经过一个self-attention层,这个层处理一个词的时候,不仅会使用这个词本身的信息,还会关注上下文其它词的信息。
self-attention的输出会被传入一个全连接的前馈神经网络,每个Encoder的前馈神经网络参数个数都是相同的,但是他们的作用是独立的。如下图:
每个Decoder也同样具有这样的层级结构,但是在这之间有一个Attention层,这个层能帮助Decoder聚焦于输入句子的相关部分。
2.2. 微观层面
Transformer内部结构如下图所示,由Encoder和Decoder两大部分组成。其中,Encoder负责将输入的自然语言序列映射成为隐藏层,然后Decoder将隐藏层映射为自然语言序列。
如下图所示是以机器翻译为例,说明模型具体运行过程:
- 输入自然语言序列到Encoder:Why do we work?(我们为什么工作);
- Encoder输出的隐藏层,再输入到解码器;
- 输入
<start>
(起始)符号到解码器; - 得到第一个字"为";
- 将得到的第一个字"为"落下来再输入到解码器;
- 得到第二个字"什";
- 将得到的第二字再落下来,直到解码器输出
<end>
(终止符),即序列生成完成。
2.2.1. Encoder
下面我们再逐步拆开理解,首先是Encoder,即把自然语言序列映射为隐藏层的数学表达的过程。下图为一个Encoder block结构图。
2.2.1.1. 输入嵌入(input Embedding)
输入数据X维度为:[batch_size, sequence_length],比如输入“你好啊。最近正在忙什么呢?明天有空出来喝茶。几个朋友都来。”,batch size指的是句子数,sequence length指的是输入的句子中最长的句子的字数。这里共四句话,所以bacth_size为4。最长的句子是8个,所以sequence_length为8。输入数据维度为[4,8]。
但是,我们不能直接将这些语句输入到Encoder中,因为Transformer不认识,所以需要先进行Embedding,找到每个字的数学表达,即得到图中的input Embedding,通过查表得到字向量,它的维度就变为[batch_size,sequence_length,embedding_dimmension],embedding_dimmension表示字向量的长度。
简单来说,就是字->词向量的转换,这种转换是将字转换为计算机能够辨识的数学表示,用到的方法是Word2Vec。得到的 X e m b e d d i n g X_{embedding} Xembedding的维度是[batch_size,sequence_length,embedding_dimmension]。其中,embedding_dimmension的大小由Word2Vec算法决定,例如Transformer采用512长度的词向量。因此, X e m b e d d i n g X_{embedding} Xembedding的维度是[4,8,512]。如下图所示。
2.2.1.2. 位置编码(Positional Encoding)
Transformer以token作为输入,将token进行input Embedding之后,再和Positional Encoding相加。注意这里不是拼接,而是对应位置上的数值进行加和。
i n p u t = i n p u t E m b e d d i n g + P o s i t i o n a l E m b e d d i n g input= input Embedding+ Positional Embedding input=inputEmbedding+PositionalEmbedding
上文我们提到,input Embedding的维度是512,由于是相加关系,自然而然地,这里Positional Encoding的维度也是512。
为什么要使用Positional Encoding呢?我们知道,NLP领域中,模型的输入是一串文本,也就是序列Sequence。
而在以前的模型(RNN或LSTM)中,NLP的每个序列都是一个字一个字的输入到模型当中。比如有一句话是“我喜欢吃洋葱”,那么输入模型的顺序就是“我”,“喜”,“欢“,”吃“,”洋“,”葱”,一个字一个字的。
这样的输入方式其实就引入了一个问题。一个模型每次只吃了一个字,那么模型只能学习到前后两个字的信息,无法知道整句话讲了什么。为了解决这个问题,Transformer模型引用了Self-attention来解决这个问题。Self-attention的输入方式如下:
它可以一次性输入所有的字。但是NLP的输入文本要按照一定的顺序才可以,因为不同的语序,语义很有可能是不同的。比如下面两句话:
句子1:我喜欢吃洋葱
句子2:洋葱喜欢吃我
所以,对于Transformer结构而言,为了更好的发挥并行输入的特点,首先要解决的问题就是要让模型输入具有一定的位置信息。因此,Transformer加入了Positional Encoding机制。
2.2.1.2.1. 构造位置编码
用整型值标记位置
说起标记位置,大概首先能想到的方法就是给第一个字标记1,第二个字标记2…,以此类推。但是,
- 在处理不同长度的句子时,模型可能碰到比训练的序列更长的句子,这将不利于模型泛化。
- 随着序列长度增加,位置标记值越来越大,模型将很难学习到这些位置信息。
用[0,1]范围标记位置
这时候可以将模型位置值限制在[0,1]范围内,来解决上述问题。其中,第一个字标记0,最后一个字标记1,中间的均分,比如共3个字,位置信息就是[0, 0.5, 1];4个字位置信息就是[0, 0.33, 0.69, 1]。
但是这样,序列长度不同时,字与字的相对距离是不同的。
所以,理想情况下,Positional Encoding的设计应该满足以下条件:
- 为每个字输出唯一的编码可以表示每个字在序列中的绝对位置;
- 不同长度的序列之间,任意两个字的距离/相对位置应该保持一致;
- 可以表示模型在训练中未遇到过的句子长度。
绝对位置:“我”是第一个字,“喜”是第二个字,…
相对位置:“喜”在“我”的后面一位,“吃”在“喜”的后面两位…
两个字之间的距离:“我”和“喜”差1个位置,“我”和“吃”差3个位置…
用二进制向量标记位置
位置信息是作用在input Embedding上的,因此可以用一个和input Embedding维度一致的向量表示位置。这里以d_model=3为例,位置向量可以表示为下图所示。
这样满足所有值都是有界的(位于0、1之间),且Transformer中d_model=512,足够将每个位置都编码出来了。
但是,这样编码的位置向量,处在一个离线空间,不同位置间的变化是不连续的。
用周期函数(sin)标记位置
到这里,我们更明确了,需要的是有界且连续的函数,最先想到的,正弦函数sin可以满足吧。
我们可以将位置向量中的每个元素都用一个sin函数表示,第t个字的位置可以表示为:
P E t = [ s i n ( 1 2 0 t ) , s i n ( 1 2 1 t ) , . . . , s i n ( 1 2 i − 1 t ) , . . . , s i n ( 1 2 d m o d e l − 1 t ) ] PE_t=[sin({\frac{1}{2^0}}t),sin({\frac{1}{2^1}}t),...,sin({\frac{1}{2^{i-1}}}t),...,sin({\frac{1}{2^{d_{model}-1}}}t)] PEt=[sin(201t),sin(211t),...,sin(2i−11t),...,sin(2dmodel−11t)]
如下图所示,每一行表示一个 P E t PE_t PEt,每一列表示 P E t PE_t PEt中的第i个元素。旋钮用于调整精度,越往右边的旋钮,需要调整的精度越大,因此指针移动的步伐越小。
每一排的旋钮都在上一排的基础上进行调整(函数中t的作用)。通过频率 1 2 i − 1 \frac{1}{2^{i-1}} 2i−11控制sin函数的波长,频率不断减小,则波长不断变大,此时sin函数对t的变动越不敏感,以此来达到越向右的旋钮,指针移动步伐越小的目的。
为什么波长与频率成反比?
对于三角函数,
y = A s i n ( B x + C ) + D y=Asin(Bx+C)+D y=Asin(Bx+C)+D周期是 2 π B \frac{2π}{B} B2π,频率是 B 2 π \frac{B}{2π} 2πB,因此B越大,频率越大,一个周期内函数图像重复次数越多,波长越短。
这也类似于二进制编码,每一位上都是0和1的交互,越往低位(左移),交互的频率越慢。
此外,由于sin是周期性函数,纵向看,如果函数频率偏大,引起波长偏短,则不同t对应的位置向量可能会存在重合。例如下图中(d_model=3),图中点表示序列中每个字的位置向量,颜色越深,字的位置越靠后,在频率偏大时,位置向量点连成了一个闭环。
为了避免这种情况,则要尽量把波长拉长。最简单的方法就是把所有的频率尽可能设小。因为,在Transformer论文中,频率设为 1 1000 0 i / d m o d e l − 1 \frac{1}{10000^{i/{d_{model}-1}}} 10000i/dmodel−11。
所以,到这里,位置向量可以表示为:
P E t = [ s i n ( w 0 t ) , s i n ( w 1 t ) , . . . , s i n ( w i − 1 t ) , . . . , s i n ( w d m o d e l − 1 t ) ] PE_t=[sin(w_0t),sin(w_1t),...,sin(w_{i-1}t),...,sin(w_{d_{model}-1}t)] PEt=[sin(w0t),sin(w1t),...,sin(wi−1t),...,sin(wdmodel−1t)]
其中, w i = 1 1000 0 i / d m o d e l − 1 w_i=\frac{1}{10000^{i/{d_{model}-1}}} wi=10000i/dmodel−11
用sin和cos交替标记位置
目前为止,位置向量已经满足:
- 每个字的向量唯一(每个sin函数频率足够小,波长足够长,不会重合)。
- 位置向量的值有界,且连续。模型在处理位置向量时泛化性强,即更好处理长度和训练数据分布不一致的序列。
但是,我们还希望不同的位置向量是可以通过线性变换得到的。这样,不仅能表示一个字的绝对位置,还可以表示一个字的相对位置。即:
P E t + △ t = T △ t ∗ P E t PE_{t+\triangle t}=T_{\triangle t}*PE_t PEt+△t=T△t∗PEt
这里,T表示一个线性变化矩阵。假设t是一个角度值, △ t \triangle t △t就是旋转的角度,则上面的公式可以写为:
( s i n ( t + △ t ) c o s ( t + △ t ) ) = ( c o s △ t s i n △ t − s i n △ t c o s △ t ) ⋅ ( s i n t c o s t ) \begin{pmatrix}sin{(t+\triangle t)} \\ cos{(t+\triangle t)} \end{pmatrix}=\begin{pmatrix} cos{\triangle t}&sin{\triangle t} \\ -sin{\triangle t}&cos{\triangle t} \end{pmatrix}\cdot\begin{pmatrix}sin{t} \\ cos{t} \end{pmatrix} (sin(t+