ResNet50是一种深度卷积神经网络,它使用了所谓的"bottleneck"结构来加速训练过程并提高准确性。
在ResNet50中,bottleneck结构通常指的是一种卷积层的组合,其中包括一个小卷积层(通常具有1x1卷积核),跟着是一个中间的卷积层(通常具有3x3卷积核),然后是另一个小卷积层(同样具有1x1卷积核)。这种结构有助于减少模型的参数数量,同时保留足够的表示能力来捕捉图像的细节信息。
举个例子,假设我们有一个输入图像的尺寸为224x224x3(高度、宽度和颜色通道数),我们希望对其使用一个大小为64的卷积核来提取特征。如果直接使用大尺寸的卷积核,则可能会导致模型的参数数量