resnet50中的bottleneck

ResNet50是一种深度卷积神经网络,它使用了所谓的"bottleneck"结构来加速训练过程并提高准确性。

在ResNet50中,bottleneck结构通常指的是一种卷积层的组合,其中包括一个小卷积层(通常具有1x1卷积核),跟着是一个中间的卷积层(通常具有3x3卷积核),然后是另一个小卷积层(同样具有1x1卷积核)。这种结构有助于减少模型的参数数量,同时保留足够的表示能力来捕捉图像的细节信息。

举个例子,假设我们有一个输入图像的尺寸为224x224x3(高度、宽度和颜色通道数),我们希望对其使用一个大小为64的卷积核来提取特征。如果直接使用大尺寸的卷积核,则可能会导致模型的参数数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值