卷积目的:把原始输入的图像转化为一个特征矩阵(特征图),矩阵的每一个数值代表原始图像一个小区域的特征值,在一个小区域也可以提多个特征。
卷积核就相当于神经网络的权重参数,1×1的卷积核和全连接的效果差不多
【卷积核所涉及的参数】
大小:最好选择小一些的(常用3×3,都是奇数),第三个维度(一般为通道数)要和输入保持一致,否则无法进行卷积
值:最初是随机初始化的,会不断更新
计算过程:卷积核的每一层分别与输入的每一层对应计算,卷积核与原始图像小区域对应位置相乘再求和,将多个通道求得的值相加再加上偏置,即为此区域的特征值,如下图所示,第一个小区域的特征值为绿色中的3 (内积表示两个向量的相关程度,内积越大越相关)

移动步长:(通常步长为1)继续求下一个区域的特征值,最后求得一个特征图,后面再更新卷积核和偏置,得到新的特征图,提出来的特征没有什么特殊的意义,只是给计算机使用,值大的表示这个区域重要(热度图:展现图像中关注的区域)

padding:进行边缘填充,把之前的边缘点的重要性提高
卷积核个数:一般为64 128 256,一个卷积核可以生成一个特征图
卷积要做多次,越往后的卷积的感受野(特征图的一个值对应原始图像中多大的区域)越大,即越接近全局特征

本文详细介绍了卷积神经网络的基本概念和技术细节,包括卷积的目的、卷积核的作用及参数设置、池化层的功能,以及如何通过残差模块解决深层网络的退化问题。
最低0.47元/天 解锁文章
2083

被折叠的 条评论
为什么被折叠?



