卷积神经网络+resnet

本文详细介绍了卷积神经网络的基本概念和技术细节,包括卷积的目的、卷积核的作用及参数设置、池化层的功能,以及如何通过残差模块解决深层网络的退化问题。

卷积目的:把原始输入的图像转化为一个特征矩阵(特征图),矩阵的每一个数值代表原始图像一个小区域的特征值,在一个小区域也可以提多个特征。

卷积核就相当于神经网络的权重参数,1×1的卷积核和全连接的效果差不多

【卷积核所涉及的参数】

大小:最好选择小一些的(常用3×3,都是奇数),第三个维度(一般为通道数)要和输入保持一致,否则无法进行卷积

值:最初是随机初始化的,会不断更新

计算过程:卷积核的每一层分别与输入的每一层对应计算,卷积核与原始图像小区域对应位置相乘再求和,将多个通道求得的值相加再加上偏置,即为此区域的特征值,如下图所示,第一个小区域的特征值为绿色中的3 (内积表示两个向量的相关程度,内积越大越相关)

移动步长:(通常步长为1)继续求下一个区域的特征值,最后求得一个特征图,后面再更新卷积核和偏置,得到新的特征图,提出来的特征没有什么特殊的意义,只是给计算机使用,值大的表示这个区域重要(热度图:展现图像中关注的区域)

padding:进行边缘填充,把之前的边缘点的重要性提高

卷积核个数:一般为64 128 256,一个卷积核可以生成一个特征图

卷积要做多次,越往后的卷积的感受野(特征图的一个值对应原始图像中多大的区域)越大,即越接近全局特征

【计

### 卷积神经网络ResNet模型实现与使用 #### 背景介绍 卷积神经网络CNNs)架构高度依赖于输入数据的性质以及预期输出大小。对于图像或音频序列等不同类型的输入,存在多种常见的卷积神经网络结构,其中包括ResNet[^1]。 #### ResNet简介 ResNet(残差网络),由微软研究院的研究人员提出,在ImageNet竞赛中取得了优异的成绩。该模型通过引入跳跃连接解决了深层网络训练中的梯度消失问题,使得可以构建更深更复杂的网络而不会导致性能下降。 #### 实现ResNet模型 下面是一个简单的基于PyTorch框架下的ResNet模型实现: ```python import torch from torchvision import models class SimpleResNet(torch.nn.Module): def __init__(self, num_classes=1000): super(SimpleResNet, self).__init__() # 使用预定义好的resnet50作为基础特征提取器 resnet = models.resnet50(pretrained=True) # 替换最后一层全连接层以适应新的分类任务 fc_in_features = resnet.fc.in_features resnet.fc = torch.nn.Linear(fc_in_features, num_classes) self.model = resnet def forward(self, x): return self.model(x) if __name__ == "__main__": device = 'cuda' if torch.cuda.is_available() else 'cpu' net = SimpleResNet(num_classes=10).to(device) dummy_input = torch.randn((1, 3, 224, 224)).to(device) output = net(dummy_input) print(output.shape) # 应打印torch.Size([1, 10]) ``` 这段代码展示了如何利用`torchvision.models`库快速搭建一个用于特定类别预测的任务上的简化版ResNet模型,并进行了基本测试。 #### 数据准备 为了能够有效地应用上述创建的ResNet模型来进行时间序列预测或其他视觉识别任务,需要准备好合适的数据集并对其进行适当处理。这通常涉及到将原始图片转换成适合喂入网络的形式——即标准化后的张量形式。此外还需要考虑批量加载机制来提高效率[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值