题目一:
题目二:
解法(二):
class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
int len = nums.length;
if(len==0) return res;
boolean[] used = new boolean[len];
Deque<Integer> path = new ArrayDeque<>(len);
dfs(nums,len,0,path,used,res);
return res;
}
private void dfs(int[] nums,int len,int depth,Deque<Integer> path,boolean[] used,List<List<Integer>> res){
if(depth==len){
res.add(new ArrayList<>(path));
return;
}
for(int i=0;i<len;i++){
if(!used[i]){
path.addLast(nums[i]);
used[i] = true;
dfs(nums,len,depth+1,path,used,res);
used[i] = false;
path.removeLast();
}
}
}
}
思路:
说明:
1、每一个结点表示了求解全排列问题的不同的阶段,这些阶段通过变量的「不同的值」体现,这些变量 的不同的值,称之为「状态」;
2、使用深度优先遍历有「回头」的过程,在「回头」以后, 状态变量需要设置成为和先前一样
,因此在回到上一层结点的过程中,需要撤销上一次的选择,这个操作称之为「状态重置」;
3、深度优先遍历,借助系统栈空间,保存所需要的状态变量,在编码中只需要注意遍历到相应的结点的时候,状态变量的值是正确的,具体的做法是:往下走一层的时候,path变量在尾部追加,而往回走的时候,需要撤销上一次的选择,也是在尾部操作,因此 path 变量是一个栈;4、 深度优先遍历通过「回溯」操作,实现了全局使用一份状态变量的效果。