leetcode:递归/回溯--全排列

题目一:
在这里插入图片描述
题目二:
在这里插入图片描述

解法(二):

class Solution {
    public List<List<Integer>> permute(int[] nums) {
        List<List<Integer>> res = new ArrayList<>();
        int len = nums.length;

        if(len==0) return res;

        boolean[] used = new boolean[len];
        Deque<Integer> path = new ArrayDeque<>(len);

        dfs(nums,len,0,path,used,res);
        
        return res;
    }

    private void dfs(int[] nums,int len,int depth,Deque<Integer> path,boolean[] used,List<List<Integer>> res){
        if(depth==len){
            res.add(new ArrayList<>(path));
            return;
        }
        for(int i=0;i<len;i++){
            if(!used[i]){
                path.addLast(nums[i]);

                used[i] = true;
                dfs(nums,len,depth+1,path,used,res);
                used[i] = false;
                path.removeLast();
            }
        }
    }
}

思路:
在这里插入图片描述

说明:

1、每一个结点表示了求解全排列问题的不同的阶段,这些阶段通过变量的「不同的值」体现,这些变量 的不同的值,称之为「状态」;
2、使用深度优先遍历有「回头」的过程,在「回头」以后, 状态变量需要设置成为和先前一样
,因此在回到上一层结点的过程中,需要撤销上一次的选择,这个操作称之为「状态重置」;
3、深度优先遍历,借助系统栈空间,保存所需要的状态变量,在编码中只需要注意遍历到相应的结点的时候,状态变量的值是正确的,具体的做法是:往下走一层的时候,path变量在尾部追加,而往回走的时候,需要撤销上一次的选择,也是在尾部操作,因此 path 变量是一个栈;

4、 深度优先遍历通过「回溯」操作,实现了全局使用一份状态变量的效果。

在这里插入图片描述

参考:
https://leetcode-cn.com/problems/permutations/solution/hui-su-suan-fa-python-dai-ma-java-dai-ma-by-liweiw/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值