概率中逗号分号和竖线
p(a,b)指a、b两个事件同时发生的概率,逗号在这里连接两个事件,表示与的关系
p(x|theta)不总是代表条件概率;也就是说p(x|theta)不代表条件概率时与p(x;theta)等价。而一般地,写竖杠表示条件概率,是随机变量。
分号p(x; theta)表示待估参数(是固定的,只是当前未知),应该可以直接认为是p(x),加了;是为了说明这里有个theta的参数,p(x; theta)意思是随机变量X=x的概率。在贝叶斯理论下又叫X=x的先验概率。
有的时候会遇到P(D∣θ)P(D|\theta)P(D∣θ),这个DDD是数据集,θ\thetaθ代表数据集的概率分布的参数。在这个情况下,就是P(D∣θ)P(D|\theta)P(D∣θ)代表似然,就不是概率分布的意思了。
相应的还有就是P(x∣D)P(x|D)P(x∣D),这个就是一个数据集DDD下的概率分布。是一个条件概率。一般是概率分布就不用注重竖杠后面的东西,就是在某个条件下的概率分布。
似然和条件概率的问题,似然是表示相似度,一般都是模型和数据集之间的关系。而条件概率则是在一个情况出现的前提下,另一情况的概率。他们两个表示相同,但是意义不同。
本文探讨了概率论中逗号、分号和竖线的用法。逗号表示两个事件的并集,即同时发生的概率;竖线通常代表条件概率,如p(x|theta)表示随机变量X在条件theta下的概率;分号p(x;theta)用于表示固定但未知的参数theta,是X=x的先验概率。还区分了似然P(D|θ)与条件概率P(x|D)的不同意义。
2万+

被折叠的 条评论
为什么被折叠?



