简介:摄像头定位算法在计算机视觉中用于确定设备在三维空间的位置和姿态,对场景分析、目标追踪等至关重要。本文章将介绍摄像头定位的数学基础,如针孔相机模型,以及标定和定位的常用方法,包括特征匹配法、深度学习法、结构光法、SLAM和视觉惯性导航系统(VIO)。此外,文章还探讨了这些算法在无人驾驶、无人机导航、增强现实等领域的实际应用,并展望了技术未来的发展方向。
1. 摄像头定位的数学基础
在计算机视觉领域,摄像头定位是一项关键的技术,它依赖于一系列复杂的数学概念和模型。理解这些数学基础对于开发高效和精确的定位系统至关重要。
1.1 几何变换与坐标系
摄像头定位首先涉及到几何变换和坐标系的概念。通过对场景中物体的坐标点进行变换,我们可以在不同的视角下重现其位置和方向。这通常涉及到矩阵运算,如旋转、平移和缩放等。
1.2 相机成像原理
摄像头捕获的图像实际上是一个三维世界在二维平面上的投影。理解相机成像原理需要掌握投影矩阵的知识,它描述了三维点如何变换到二维成像平面上。
1.3 线性代数基础
深入研究线性代数是实现摄像头定位的基石。掌握向量空间、特征值与特征向量以及矩阵分解等概念,将有助于更好地理解后续章节中复杂的数学运算和算法原理。
通过结合几何变换、相机成像原理和扎实的线性代数知识,我们才能逐步揭开摄像头定位技术的神秘面纱。这些数学工具不仅对于理论研究重要,它们也为实际应用提供了强大的支持。
2. 针孔相机模型及标定
2.1 针孔相机模型基础
2.1.1 相机模型的基本概念
针孔相机模型是一种理想化的相机模型,它假设相机是一个没有镜头的小孔,光线通过小孔并在成像平面上形成倒立的图像。这个模型是计算机视觉和摄影学中不可或缺的基础,因为它简化了现实世界中光线传播和图像生成的复杂性。针孔相机模型通常被用于图像的校正、透视变换以及3D场景重建等。
在针孔模型中,定义世界坐标系(World Coordinate System,WCS)和相机坐标系(Camera Coordinate System,CCS)。世界坐标系是固定的,通常用来描述场景中物体的位置,而相机坐标系是移动的,它随相机的移动而改变。通过旋转和平移,可以将物体从世界坐标系变换到相机坐标系中。
2.1.2 内参和外参的定义及作用
相机的内参和外参是针孔相机模型中两个关键的参数集,它们定义了相机的内部几何结构和相机相对于世界坐标系的方向和位置。
内参(Intrinsic Parameters)包括焦距(f),主点坐标(cx, cy),以及径向畸变系数和切向畸变系数。这些参数描述了相机内部的光学特性,如何将3D点投影到2D成像平面上。其中,焦距与相机传感器的尺寸共同决定了视场角(Field of View, FOV),主点是投影平面中心,径向畸变和切向畸变则描述了镜头畸变的影响。
外参(Extrinsic Parameters)包括旋转矩阵(R)和平移向量(T),它们定义了相机坐标系相对于世界坐标系的方向和位置。具体来说,旋转矩阵描述了相机坐标系到世界坐标系的方向,而平移向量则表示了两个坐标系的原点之间的距离和方向。
理解内参和外参对于准确地从图像中重建3D场景至关重要。在实际应用中,这两个参数集通常通过标定过程获得,并用于图像校正、3D重建和相机姿态估计等。
2.2 摄像头标定技术
2.2.1 标定过程与方法
摄像头标定是一个确定相机内部参数和外部参数的过程。为了实现准确的标定,通常会使用已知几何结构的标定物,如棋盘格或圆形格点。标定步骤大致可以分为图像采集、特征点检测、参数求解三个阶段。
-
图像采集 :首先,需要从不同的角度拍摄标定物的多张图片。对于棋盘格标定板,通常要求其平面至少出现在相机视场的三个不同位置。
-
特征点检测 :接下来,使用特征检测算法识别图像中的特征点(如棋盘格的角点)。常用的算法有Harris角点检测、Shi-Tomasi角点检测等。
-
参数求解 :利用检测到的特征点和它们在世界坐标系中的已知位置,通过一系列数学计算求解出内参和外参。常用的方法包括张正友标定法和非线性最小二乘法。
下面是一个使用OpenCV进行摄像头标定的代码示例:
import numpy as np
import cv2
import glob
# 准备对象点,如 (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
# 存储所有图像的对象点和图像点
objpoints = [] # 真实世界中的3D点
imgpoints = [] # 图像中的2D点
# 读取所有图片
images = glob.glob('path_to_calibration_images/*.jpg')
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 找到棋盘格角点
ret, corners = cv2.findChessboardCorners(gray, (7,6), None)
# 如果找到,添加对象点,图像点
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
# 绘制并显示角点
img = cv2.drawChessboardCorners(img, (7,6), corners, ret)
cv2.imshow('img', img)
cv2.waitKey(500)
cv2.destroyAllWindows()
# 标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# 输出结果
print("Camera matrix : \n")
print(mtx)
print("dist : \n")
print(dist)
print("rvecs : \n")
print(rvecs)
print("tvecs : \n")
print(tvecs)
2.2.2 标定结果的验证与误差分析
通过标定获得的内参和外参需要通过一系列的验证步骤来确保其准确性。一个有效的验证方法是在标定过程中使用一部分图像作为训练数据,而将另一部分作为测试数据。将测试图像使用求得的参数进行去畸变处理,比较去畸变前后的图像特征点位置,以评估标定的准确性。
此外,误差分析是标定后的一个重要步骤。理想情况下,标定误差应尽可能小,因为标定误差会直接影响到后续的图像处理和3D重建的质量。可以通过计算标定板上的特征点在图像上投影的反向投影误差(Reprojection Error)来评估标定的准确性。通常这个误差值应该小于一个像素值,例如0.5个像素。
在OpenCV中,我们可以使用以下代码来计算反向投影误差:
for i in range(len(objpoints)):
img = cv2.imread(images[i])
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2)/len(imgpoints2)
print(f"Image {i}: {error}")
mean_error = np.mean(errors)
print(f"Total Mean Error: {mean_error}")
通过这些步骤,可以确保摄像头标定过程的准确性和可靠性。
3. 特征匹配法的原理与实践
3.1 特征检测与描述
3.1.1 特征点检测算法概述
在计算机视觉领域,特征点检测是识别图像中显著点的过程,这些点在一定区域内独特且容易被识别。特征点作为图像内容的一种表示方式,在图像匹配、对象识别和跟踪等任务中占据核心地位。SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)和ORB(Oriented FAST and Rotated BRIEF)是目前较为流行的特征点检测算法。
SIFT算法以其卓越的特征提取能力和尺度、旋转不变性著称,但其计算复杂度较高。随着计算能力的提升,SIFT算法逐渐被优化版本如SURF替代。SURF算法结合了Haar小波与积分图的概念,在保证特征质量的同时,显著提高了检测和匹配的速度。相较之下,ORB算法以速度见长,它结合了FAST的关键点检测与BRIEF的描述子,通过引入方向性信息来增强旋转不变性。
3.1.2 特征描述子的比较与选择
特征描述子的目的是为每个检测到的特征点赋予一个独特的描述符,这些描述符可以用来比较不同图像中对应点的相似性。常见的特征描述子包括SIFT描述子、SURF描述子和ORB描述子。
SIFT描述子为128维的浮点数向量,能够提供非常详细的特征信息,适合于复杂环境下的匹配。SURF描述子通常为64维,继承了SIFT的优良特性,同时也更加紧凑。ORB描述子则为32维,其设计目标是在速度上优于其他描述子,适用于对实时性要求较高的应用。
在选择描述子时,需要根据实际应用的需求权衡描述子的维度、计算速度和匹配的准确性。例如,在实时系统中,我们可能会选择ORB描述子,而在对准确性要求极高的场合,可能会选择SIFT或SURF。
3.2 特征匹配技术实施
3.2.1 匹配策略与优化
特征匹配是将不同图像中的特征点对应起来的过程。最简单的匹配策略是基于最近邻距离,即对于一个特征点,我们找到另一幅图像中距离最近的点作为匹配点。然而,这种策略容易受到噪声的影响,导致错误的匹配。为了减少错误匹配,引入了比率测试,即要求最近邻与次近邻距离的比例小于某个阈值。
特征匹配的优化通常涉及以下几个方面:
- 距离度量的改进 :除了欧氏距离,还可以采用汉明距离、平方距离等不同的度量方法。
- 匹配策略的改进 :如双向匹配(对两幅图像中的特征点集相互匹配),能够减少错误匹配。
- 匹配结果的优化 :如使用RANSAC(随机抽样一致性)算法剔除错误匹配。
3.2.2 匹配结果的评估与优化
匹配结果的评估主要通过以下指标进行:
- 匹配准确率 :正确匹配点数与总匹配点数的比率。
- 重复率 :给定匹配点中正确匹配的比例。
- 召回率 :正确匹配点在所有可能匹配点中的比例。
为了提高匹配的准确率,可以通过以下方式优化匹配结果:
- 动态调整阈值 :基于特定应用场景调整最近邻和次近邻距离的比率阈值。
- 引入机器学习方法 :如使用支持向量机(SVM)对匹配结果进行分类,区分正确和错误的匹配。
- 多特征融合 :利用不同特征描述子进行匹配,通过融合结果提高匹配的鲁棒性。
3.2.3 特征匹配法的实践案例
为了深入理解特征匹配法的实践,我们考虑一个现实中的案例:在视频监控系统中,通过特征匹配技术来跟踪特定目标。
假定我们有两个视频帧,我们需要通过检测并描述每个帧中的特征点,然后找到这些特征点在另一帧中的对应点。以下是使用OpenCV库实现特征匹配的基本步骤:
import cv2
import numpy as np
# 读取图像
img1 = cv2.imread('frame1.jpg', 0) # 查询图像
img2 = cv2.imread('frame2.jpg', 0) # 训练图像
# 初始化ORB检测器
orb = cv2.ORB_create()
# 检测关键点并计算描述子
kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)
# 创建匹配器
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# 进行匹配
matches = bf.match(des1, des2)
# 根据距离排序匹配结果
matches = sorted(matches, key=lambda x: x.distance)
# 绘制前10个匹配项
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=2)
cv2.imshow('Matches', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()
该代码首先使用ORB算法检测图像中的关键点,并计算描述子。然后,使用BFMatcher进行匹配,并对匹配结果按距离进行排序,最后使用 cv2.drawMatches
函数绘制匹配结果。
在实际应用中,匹配结果的优化可能还会涉及到动态阈值的调整,以及利用机器学习方法进行匹配结果分类。此外,为了提高效率,可能还会考虑多线程或GPU加速等优化策略。
通过本节的介绍,我们了解了特征匹配法的基本概念、算法和优化技术,并通过一个实际的案例,深入探讨了特征匹配法的实践应用。特征匹配法在摄像头定位中具有重要的地位,为后续的三维重建和目标跟踪提供了坚实的基础。
4. 深度学习在定位中的应用
深度学习已经成为了现代计算机视觉问题中不可或缺的一部分,其在摄像头定位领域的应用也日益增多。本章将详细探讨深度学习如何应用于摄像头定位,包括基础知识、网络结构以及如何通过端到端学习方法解决定位问题。
4.1 深度学习基础与网络结构
4.1.1 卷积神经网络(CNN)简介
卷积神经网络(Convolutional Neural Network, CNN)是一种专门用来处理具有网格结构的数据的深度学习模型,例如时间序列数据(一维网格)和图像数据(二维网格)。CNN通过利用卷积层和池化层的组合,有效地提取图像的局部特征,并保持了空间层级的结构。
代码块:
import tensorflow as tf
from tensorflow.keras import layers, models
# 构建一个简单的CNN模型
def build_cnn_model(input_shape):
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
return model
# 假设输入图像的尺寸是64x64x3(宽x高x通道)
cnn_model = build_cnn_model((64, 64, 3))
参数解释:
-
Conv2D
:二维卷积层,参数包括滤波器数量、滤波器大小、激活函数和输入形状。 -
MaxPooling2D
:二维最大池化层,用于降低特征图的维度,参数为池化窗口大小。
逻辑分析:
上述代码中,首先定义了一个Sequential模型,并逐步添加卷积层和池化层。每个卷积层后面都跟随一个非线性激活函数ReLU,以及一个最大池化层来降低特征图的空间维度。卷积层提取图像的局部特征,池化层则帮助模型在空间维度上降低过拟合的风险和计算复杂度。
4.1.2 常见的深度学习模型介绍
随着深度学习的发展,涌现了众多高效的CNN架构。这些模型各有特色,被广泛应用于各类视觉任务,包括定位问题。
表格:
| 模型名称 | 年份 | 主要贡献 | 应用场景 | |-----------------|------|-----------------------------------|--------------------| | LeNet | 1998 | 第一个成功的CNN结构 | 手写数字识别 | | AlexNet | 2012 | 引入ReLU和Dropout | 图像分类 | | VGG | 2014 | 强调3x3卷积核的使用 | 图像分类 | | GoogLeNet (Inception) | 2014 | 引入Inception模块 | 图像分类 | | ResNet | 2015 | 引入残差连接,解决深度网络训练难题 | 图像分类、定位 | | YOLO | 2016 | 实现实时目标检测 | 目标检测 |
这些模型不仅在理论上取得了巨大成功,而且在实践中也展示了强大的性能。例如,ResNet通过引入残差连接克服了深度学习中的梯度消失问题,使得网络可以被更深,从而提取更抽象的特征。
4.2 深度学习定位方法
深度学习方法为摄像头定位带来了新的解决途径,尤其是端到端学习策略,它可以直接从原始图像到位置估计进行映射,极大地简化了传统的定位流程。
4.2.1 端到端学习的定位策略
端到端学习是深度学习中一种常见的策略,它将数据从输入端直接映射到输出端,省去了复杂的中间步骤,使得整个学习过程更加直接和高效。
mermaid流程图:
graph LR
A[原始图像] -->|CNN模型| B[特征提取]
B -->|全连接层| C[位置估计]
C --> D[位置输出]
逻辑分析:
在定位的上下文中,端到端学习通常包括以下几个步骤:
- 数据输入 :原始图像数据输入到CNN模型中。
- 特征提取 :使用卷积层和池化层提取图像特征。
- 全连接层 :将提取的特征送入全连接层进行进一步处理,并得到位置估计。
- 位置输出 :最终输出的位置信息可用于导航或增强现实应用。
端到端的学习方法使得定位模型的训练变得更加高效,无需进行复杂的特征工程。同时,模型可以自动学习最相关的特征,并减少由于人工特征选择错误导致的误差。
4.2.2 深度学习定位的挑战与优化
尽管端到端学习策略为摄像头定位带来了许多便利,但同时也带来了一些挑战,例如需要大量的标记数据进行训练,以及过拟合的风险。
代码块:
from tensorflow.keras.callbacks import EarlyStopping
# 定义一个回调函数用于提前停止训练
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
# 训练模型
history = cnn_model.fit(train_data, train_labels, epochs=50, validation_data=(val_data, val_labels), callbacks=[early_stopping])
参数解释:
-
EarlyStopping
:用于提前停止训练的回调函数,当验证集上的损失不再改善时停止训练。 -
monitor
:被监控的量,这里监控的是验证集上的损失。 -
patience
:在触发提前停止前,允许训练继续进行的次数。
逻辑分析:
在训练深度学习模型时,为了避免过拟合和节省计算资源,可以使用早停法(Early Stopping)。代码中的回调函数会在模型在验证集上连续五次损失未有改善时停止训练,并恢复最佳的模型权重。
深度学习定位面临的挑战还包括如何处理不同环境下的视觉变化,以及如何提高模型在未知环境下的泛化能力。为解决这些问题,研究者们在数据增强、模型正则化、迁移学习和多任务学习等方面进行了大量的探索和尝试。
5. 结构光法及SLAM技术
5.1 结构光法原理与应用
5.1.1 结构光技术概述
结构光技术是一种主动式三维成像技术,其工作原理是通过投射已知的编码图案(通常是条纹图案)到物体表面,由于物体表面的几何特征,投射的图案会发生变形。通过分析变形图案,可以计算出物体表面的三维形状信息。这种技术广泛应用于机器人导航、增强现实、三维重建等场景。
结构光技术的关键在于编码图案的设计,以及如何通过摄像机捕获的图像准确地恢复出物体的三维结构。一般而言,结构光系统包含一个投影仪和一个或多个摄像头。投影仪发射结构光图案,摄像头捕获图案变形后的图像,通过解析这些图像得到物体表面的深度信息。
5.1.2 结构光在定位中的实现
在定位领域中,结构光技术可用于提供精确的环境映射和物体定位。实现步骤通常包括:
- 设计合适的结构光编码图案,并通过投影仪发射到环境中。
- 使用摄像头从不同角度捕获变形的结构光图像。
- 对图像进行预处理,以提高后续处理的准确性。
- 使用图像处理算法提取图案的变形特征。
- 通过三角测量等方法计算出物体表面点的三维坐标。
- 结合多个视角的三维数据,构建出环境的三维模型。
结构光技术对于光照条件和被测物体表面特性较为敏感,因此,在实际应用中需要对这些因素进行考量。比如,对于反光或透明的表面,可能需要特殊设计的图案或者增加辅助照明来改善效果。
5.2 SLAM算法介绍与应用
5.2.1 SLAM技术的核心概念
SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)是机器人导航领域的一项关键技术,它允许机器人在未知环境中自主地进行定位和地图构建。SLAM技术的关键挑战在于如何在没有先验地图信息的情况下,利用传感器数据估计自身的位置,同时构建出环境地图。
SLAM系统通常包含传感器数据获取、运动估计、地图构建和路径规划等主要模块。根据所使用的传感器类型和数据处理方法的不同,SLAM可以分为基于视觉的SLAM(Visual SLAM, VSLAM)、基于激光的SLAM(Laser-based SLAM)等不同类型。
5.2.2 SLAM算法的分类与应用场景
SLAM算法可以从多个维度进行分类,例如:
- 根据传感器类型,可分为激光SLAM和视觉SLAM。
- 根据处理数据的方式,可分为滤波式SLAM、图优化SLAM和直接法SLAM。
- 根据环境的动态特性,可分为静态SLAM和动态SLAM。
激光SLAM 通常使用激光雷达(LIDAR)作为主要传感器,具有较高的精度和鲁棒性,广泛应用于工业自动化、自动驾驶汽车等领域。
视觉SLAM 则依赖于相机捕捉的图像数据,拥有成本低、信息丰富等优势,适用于移动机器人、增强现实等场景。
滤波式SLAM (如扩展卡尔曼滤波EKF-SLAM)通过递归贝叶斯滤波器估计系统的状态。
图优化SLAM (如g2o、GTSAM)将SLAM问题建模为图结构,并通过求解图优化问题来获得机器人轨迹和地图的最优估计。
直接法SLAM (如LSD-SLAM、DSO)直接使用图像像素强度信息进行处理,无需提取特征点,适用于纹理丰富的环境。
SLAM技术在实际应用中,通常需要针对特定的应用场景和硬件平台进行优化和适配。例如,对于室内导航,可能会优先选择视觉SLAM;而对于室外开阔且动态变化的环境,则可能优先选择激光SLAM。
通过不同算法和传感器的结合,SLAM技术正不断地提升其在复杂环境下的性能表现,为机器人和移动设备提供了强大的空间感知能力。
6. 视觉惯性导航系统(VIO)及应用案例
视觉惯性导航系统(VIO)融合了摄像头提供的视觉信息与惯性测量单元(IMU)提供的运动信息,以实现更高精度的定位和导航。VIO技术在移动机器人、无人机、虚拟现实等领域有着广泛的应用前景。
6.1 视觉惯性导航系统(VIO)的设计
6.1.1 VIO系统的构成与原理
VIO系统通常包含以下核心组件:
- 摄像头 :提供视觉信息,如单目相机、双目相机或深度相机。
- IMU :测量并报告设备的加速度和角速度,常用的IMU含有三轴陀螺仪和三轴加速度计。
- 处理器 :运行算法实时处理摄像头和IMU的数据,实现状态估计。
VIO系统的工作原理是将摄像头捕获的图像数据与IMU的动态数据相结合,通过滤波算法(如扩展卡尔曼滤波器EKF)来估计设备的位置和姿态。其中,摄像头负责环境的视觉理解和空间特征匹配,IMU则负责补充设备运动的动态信息。
6.1.2 VIO系统的关键技术与优化
VIO系统的关键技术主要包括以下几个方面:
- 特征点提取与跟踪 :从连续的图像中提取稳定可靠的特征点,并跟踪这些点以获取运动信息。
- 数据融合算法 :将摄像头数据和IMU数据进行有效的融合,以提高定位的准确性。常用的融合算法有EKF、粒子滤波器等。
- 环境建模与地图构建 :在未知环境中创建地图,以便定位和导航。
- 自我校准机制 :VIO系统需要实时调整摄像头和IMU之间的相对位置和角度,以提高系统的准确性。
优化VIO系统时,可以考虑以下策略:
- 传感器融合策略的优化 :选择或设计适合具体应用场景的融合算法,提高对噪声和误差的鲁棒性。
- 算法的实时性和效率 :优化算法以减少计算延迟,确保VIO系统的实时性能。
- 动态环境适应性 :提高系统对环境变化的适应能力,如快速变化的光照条件或动态目标的干扰。
- 能耗优化 :对于移动设备,降低系统的能耗同样重要,需要平衡处理能力与电池寿命。
6.2 摄像头定位算法的实际应用案例
6.2.1 应用案例分析
在无人机领域,VIO技术被广泛应用于实现高精度的室内定位和避障功能。例如,使用VIO技术的无人机能够在没有GPS信号的室内环境中飞行,并实时避让障碍物。无人机通过摄像头捕捉环境特征,并结合IMU数据,实现高精度的飞行控制。
在移动机器人领域,VIO技术可以帮助机器人在复杂的室内环境中进行准确的导航。例如,机器人可以利用VIO技术实现对动态环境的实时映射,并执行精确的路径规划和目标定位。
6.2.2 成功案例的总结与启示
成功案例显示,VIO系统在处理复杂的动态环境时具有显著的优势。它能有效提高移动平台的自主性和鲁棒性,特别是在GPS信号不可靠或完全不可用的情况下。
从这些案例中,我们可以总结出以下启示:
- 场景适应性 :不同应用场合对VIO系统的性能要求不同,因此系统设计时需要充分考虑应用场景的特性。
- 系统融合与协同 :单一传感器有其局限性,通过融合多个传感器的数据可以显著提高定位的准确性和稳定性。
- 算法和硬件的协同进化 :VIO技术的发展需要算法和硬件的协同进步,包括传感器精度的提高、处理器性能的增强以及算法效率的优化。
VIO技术正逐步成为移动平台导航与定位的重要解决方案,它的应用前景广阔,同时技术发展还有巨大的空间。随着相关技术的不断成熟,我们可以预见VIO将在更多的领域内发挥关键作用。
简介:摄像头定位算法在计算机视觉中用于确定设备在三维空间的位置和姿态,对场景分析、目标追踪等至关重要。本文章将介绍摄像头定位的数学基础,如针孔相机模型,以及标定和定位的常用方法,包括特征匹配法、深度学习法、结构光法、SLAM和视觉惯性导航系统(VIO)。此外,文章还探讨了这些算法在无人驾驶、无人机导航、增强现实等领域的实际应用,并展望了技术未来的发展方向。