深度学习经典网络:ShuffleNet 系列网络(ShuffleNet v1)

本文详述了ShuffleNet v1网络结构,包括channel shuffle和Shuffle Unit,探讨其如何通过分组卷积和信息混合增强轻量级网络效率。实验表明,分组卷积和channel shuffle有助于提升模型性能,特别是在资源有限的小型网络中。
摘要由CSDN通过智能技术生成

ShuffleNet v1:http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
tensorflow代码:https://github.com/MG2033/ShuffleNet
pytorch代码:https://github.com/jaxony/ShuffleNet/blob/master/model.py

0. 前言

作者主要提出了两个创新性的模块:pointwise group convolutionchannel shuffle 两个创新性的模块, 来进一步提升轻量级网络的效率。通常,在现有大型网络Xception和ResNet中为了减少计算量,会采用大量的1×1卷积操作,但是如果直接将1×1的卷积运用到小网络中会存在一些问题,像MobileNet 中1×1卷积的计算量占了绝大多数,因此作者提出来pointwise group convolution 来减少计算量。在分组卷积的过程中,当前分组的卷积会只与当前分组的输入有关,各组之间的信息会没有交流,因此作者提出来channel shuffle 操作, 将不同分组的信息在一定程度上进行混合。

1. channel shuffle for group convolution

目前像ResNeXt网络只是在3×3卷积的部分运用到了分组卷积,而当中pointwise convolution占了93.4%的MAdd, 所以一个直观的想法是对pointwise convolution也采用分组卷积。但这样会使但前输出的每一部分只与对应一小部分的输入有关,如图1(a)所示,这种特性会阻止各个分组之间信息流的相互传递,会减弱网络的表达能力。
在这里插入图片描述

图 1 channel shuffle 示意
如果我们在进行分组卷积时从不同的输入分组中获得数据,那么上述问题就可减轻,如 图1(b)所示,将卷积通道划分为不同的分组,然后对于下一层的每个分组,从不同的子分组中的数据分别获得。这可以利用图1(c)所示的**channel shuffle** 操作实现,即先将输出通道reshape成(g, m), 然后对后两个维度取转置(m, g),最后flatten成原来的形状,作为下一层的输入。关于对该过程的理解可以参考图2。

在这里插入图片描述

图 2 channel shuffle 理解

2. Shuffle Unit

在这里插入图片描述

图 3 ShuffleNet 单元
ShuffleNet Unit的结构比较清晰,借鉴ResNet的残差单元,首先参考Xception, 将3×3卷积换成depthwise convolution, 如图3(a). 之后将两个1×1卷积替换成pointwise group convolution, 值得注意的是作者参考Xception, 没有在depthwise convolution 后面加BN层, 如图3(b)。对于步长为2的模块,结构如图3(c), 主要做了两点改变,一是在shortcut分支增加3×3的average pooling, 二是将原来的Add操作替换成Concatenate,用少量计算量的增加扩大channel维度。

采用Shuffle Unit 可以大大减少计算量,例如:给定输入大小

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值