人工蜂群算法求解TSP / 优化机器学习(SVM) / 优化决策树

一、Artificial Bee Colony(ABC) Algorithm

Artificial Bee Colony (ABC) 算法是一种基于自然界蜜蜂觅食行为的优化算法,由Karaboga于2005年首次提出。它是一种群体智能算法,用于在多维和高度复杂的搜索空间中寻找全局最优解。该算法在很多领域都有广泛的应用,如函数优化、数据挖掘和机器学习等。

1.1 算法内容

ABC算法的基本思想是通过模拟蜜蜂群体在寻找蜜源的过程中的智能行为,来实现对问题解空间的搜索。算法中的蜜蜂分为三类:雇佣蜜蜂、侦查蜜蜂和观察蜜蜂。每一类蜜蜂都有其特定的功能:

  1. 雇佣蜜蜂:负责搜索已发现的蜜源附近的新蜜源。
  2. 侦查蜜蜂:负责在整个搜索空间中随机搜索新的蜜源。
  3. 观察蜜蜂:在蜜源间选择一个优质蜜源,然后转换为雇佣蜜蜂或侦查蜜蜂。

1.2 算法组成

ABC算法主要包括以下几个步骤:

  1. 初始化:生成一个包含n个解的蜜源,其中每个解代表蜜蜂搜索空间中的一个点。
  2. 雇佣蜜蜂阶段:雇佣蜜蜂根据某种概率规则在当前蜜源附近生成新的解,并评估新解的质量。如果新解的质量更好,则替换掉原来的解。
  3. 观察蜜蜂阶段:观察蜜蜂根据已有蜜源的质量选择一个蜜源,然后按照与雇佣蜜蜂类似的概率规则生成新解。如果新解的质量更好,则替换掉原来的解。
  4. 侦查蜜蜂阶段:如果某个蜜源在一定轮数内未被更新,则认为该蜜源已被耗尽,侦查蜜蜂会放弃该蜜源,随机生成一个新的解替换掉原来的解。
  5. 终止条件判断:如果达到预设的迭代次数或满足其他终止条件,算法结束。否则,返回第2步。

1.3 算法实现

ABC算法的实现过程主要包括以下几个关键函数:

  1. 初始化蜜源函数:根据问题的维度和搜索范围随机生成初始解。
  2. 生成新解函数:根据当前解生成新解。这通常通过在当前解的某个维度上添加一个随机扰动实现。
  3. 适应度函数:计算解的质量,以便在后续步骤中对解进行选择和更新。
  4. 蜜源选择函数:根据适应度值选择一个优质蜜源,以便观察蜜蜂在该蜜源附近搜索。

1.4 算法应用

ABC算法由于其全局搜索能力和鲁棒性,在许多领域都有广泛的应用,例如:

  1. 函数优化:ABC算法可以用于求解复杂的多模态函数的全局最优解。
  2. 机器学习:在神经网络训练、特征选择和聚类等机器学习任务中,ABC算法可以用于优化模型参数和特征权重。
  3. 数据挖掘:在数据预处理、特征提取和关联规则挖掘等数据挖掘任务中,ABC算法可以用于优化数据处理策略和提高挖掘效果。
  4. 工程优化:在结构设计、路径规划和资源调度等工程优化问题中,ABC算法可以用于寻找最优解决方案。

二、ABC求解TSP(Python)

首先,定义几个辅助函数:

import numpy as np
import random

# 生成随机城市坐标
def generate_cities(n, seed=42):
    np.random.seed(seed)
    return np.random.rand(n, 2)

# 计算城市间的距离矩阵
def compute_distance_matrix(cities):
    n = cities.shape[0]
    distance_matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(i+1, n):
            distance = np.linalg.norm(cities[i] - cities[j])
            distance_matrix[i, j] = distance_matrix[j, i] = distance
    return distance_matrix

# 计算路径长度
def path_length(path, distance_matrix):
    length = distance_matrix[path[-1], path[0]]
    for i in range(1, len(path)):
        length += distance_matrix[path[i - 1], path[i]]
    return length

接下去实现ABC算法:

def abc_tsp(distance_matrix, n_bees=50, n_iter=500, limit=100):
    n_cities = distance_matrix.shape[0]

    # 初始化蜜源(解)
    solutions = [np.random.permutation(n_cities) for _ in range(n_bees)]

    # 计算路径长度
    path_lengths = [path_length(sol, distance_matrix) for sol in solutions]

    # 记录每个解未更新的轮数
    trials = np.zeros(n_bees)

    for _ in range(n_iter):
        # 雇佣蜜蜂阶段
        for i in range(n_bees):
            new_solution = employed_bee(solutions[i])
            new_length = path_length(new_solution, distance_matrix)

            if new_length < path_lengths[i]:
                solutions[i] = new_solution
                path_lengths[i] = new_length
                trials[i] = 0
            else:
                trials[i] += 1

        # 观察蜜蜂阶段
        for i in range(n_bees):
            new_solution = onlooker_bee(solutions, path_lengths)
            new_length = path_length(new_solution, distance_matrix)

            worst_solution_idx = np.argmax(path_lengths)
            worst_length = path_lengths[worst_solution_idx]

            if new_length < worst_length:
                solutions[worst_solution_idx] = new_solution
                path_lengths[worst_solution_idx] = new_length
                trials[worst_solution_idx] = 0
            else:
                trials[worst_solution_idx] += 1

        # 侦查蜜蜂阶段
        for i in range(n_bees):
            if trials[i] > limit:
                solutions[i] = np.random.permutation(n_cities)
                path_lengths[i] = path_length(solutions[i], distance_matrix)
                trials[i] = 0

    best_solution_idx = np.argmin(path_lengths)
    return solutions[best_solution_idx], path_lengths[best_solution_idx]

使用ABC算法求解TSP问题:

n_cities = 30
cities = generate_cities(n_cities)
distance_matrix = compute_distance_matrix(cities)

best_solution, best_length = abc_tsp(distance_matrix)

print(f"Best solution: {best_solution}")
print(f"Best length: {best_length}")

这个例子中,生成了一个具有30个城市的随机TSP问题,并使用了ABC算法来寻找最短路径。注意这个算法是启发式的,它可能无法找到最优解,但通常可以找到一个相当好的解。你可以尝试调整参数(如蜜蜂数量、迭代次数和限制次数)来优化算法的性能。

三、ABC优化支持向量机(Support Vector Machine, SVM)的超参数

首先,我们导入必要的库和数据集:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
import numpy as np
import random

# 加载数据集
data = load_iris()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来,定义ABC算法的适应度函数和生成新解的函数:

# 计算SVM模型的准确率
def evaluate_svm(C, gamma):
    svm = SVC(C=C, gamma=gamma, random_state=42)
    svm.fit(X_train, y_train)
    y_pred = svm.predict(X_test)
    return accuracy_score(y_test, y_pred)

# 生成新的超参数解
def generate_solution():
    C = 2 ** np.random.uniform(-5, 15)
    gamma = 2 ** np.random.uniform(-15, 3)
    return C, gamma

然后实现ABC:

def abc_optimize(n_bees=50, n_iter=100, limit=10):
    # 初始化蜜源(超参数解)
    solutions = [generate_solution() for _ in range(n_bees)]

    # 计算适应度
    fitness = [evaluate_svm(C, gamma) for C, gamma in solutions]

    # 记录每个解未更新的轮数
    trials = np.zeros(n_bees)

    for _ in range(n_iter):
        # 雇佣蜜蜂阶段
        for i in range(n_bees):
            new_solution = employed_bee(solutions[i])
            new_fitness = evaluate_svm(*new_solution)

            if new_fitness > fitness[i]:
                solutions[i] = new_solution
                fitness[i] = new_fitness
                trials[i] = 0
            else:
                trials[i] += 1

        # 观察蜜蜂阶段
        for i in range(n_bees):
            new_solution = onlooker_bee(solutions, fitness)
            new_fitness = evaluate_svm(*new_solution)

            worst_solution_idx = np.argmin(fitness)
            worst_fitness = fitness[worst_solution_idx]

            if new_fitness > worst_fitness:
                solutions[worst_solution_idx] = new_solution
                fitness[worst_solution_idx] = new_fitness
                trials[worst_solution_idx] = 0
            else:
                trials[worst_solution_idx] += 1

        # 侦查蜜蜂阶段
        for i in range(n_bees):
            if trials[i] > limit:
                solutions[i] = generate_solution()
                fitness[i] = evaluate_svm(*solutions[i])
                trials[i] = 0

    best_solution_idx = np.argmax(fitness)
    return solutions[best_solution_idx], fitness[best_solution_idx]

定义雇佣蜜蜂和观察蜜蜂的行为:

def employed_bee(solution):
    C, gamma = solution
    new_C = C * np.exp(random.uniform(-1, 1))
    new_gamma = gamma * np.exp(random.uniform(-1, 1))
    return new_C, new_gamma

def onlooker_bee(solutions, fitness):
    chosen_solution_idx = roulette_wheel_selection(fitness)
    return employed_bee(solutions[chosen_solution_idx])

def roulette_wheel_selection(fitness):
    total_fitness = np.sum(fitness)
    probabilities = fitness / total_fitness
    return np.random.choice(len(fitness), p=probabilities)

最后,使用ABC算法来优化SVM的超参数:

best_solution, best_fitness = abc_optimize()

print(f"Best solution: {best_solution}")
print(f"Best fitness: {best_fitness}")

在这个例子中,使用ABC算法来搜索SVM的超参数空间,找到在测试集上准确率最高的超参数组合。请注意,这个例子中的超参数搜索空间和搜索策略是简化的,实际应用中可能需要更复杂的设置。

总结起来,ABC算法可以用于优化机器学习模型的超参数和特征权重等问题。通过定义适应度函数和生成新解的函数,结合雇佣蜜蜂和观察蜜蜂的行为,可以利用ABC算法来搜索最优解。然后,根据适应度值选择最佳解决方案。这样,我们可以通过ABC算法自动优化模型,提高其性能。

四、ABC优化决策树模型的最大深度和最小样本分割数

首先,导入必要的库和数据集:

import numpy as np
import random
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来,定义ABC算法的解空间范围和算法参数:

# 定义ABC算法的解空间范围
max_depth_min = 1
max_depth_max = 10
min_samples_split_min = 2
min_samples_split_max = 10

# 定义ABC算法的参数
n_iter = 50  # 迭代次数
n_employed = 20  # 蜜蜂数量
n_onlookers = 20  # 观察蜂数量

然后定义决策树模型的评估函数:

def evaluate_model(max_depth, min_samples_split):
    # 创建决策树模型
    model = DecisionTreeClassifier(max_depth=max_depth, min_samples_split=min_samples_split, random_state=42)
    # 在训练集上训练模型
    model.fit(X_train, y_train)
    # 在测试集上进行预测
    y_pred = model.predict(X_test)
    # 计算准确率
    accuracy = accuracy_score(y_test, y_pred)
    return accuracy

实现ABC算法: 

def artificial_bee_colony():
    best_solution = None
    best_fitness = 0

    # 初始化蜜蜂的位置
    solutions = []
    for _ in range(n_employed):
        max_depth = random.randint(max_depth_min, max_depth_max)
        min_samples_split = random.randint(min_samples_split_min, min_samples_split_max)
        solutions.append((max_depth, min_samples_split))

    for _ in range(n_iter):
        # 雇佣蜜蜂阶段
        for i in range(n_employed):
            # 生成新的解
            new_max_depth = random.randint(max_depth_min, max_depth_max)
            new_min_samples_split = random.randint(min_samples_split_min, min_samples_split_max)
            new_solution = (new_max_depth, new_min_samples_split)
            # 评估新解的适应度
            new_fitness = evaluate_model(new_max_depth, new_min_samples_split)
            # 更新最优解
            if new_fitness > best_fitness:
                best_solution = new_solution
                best_fitness = new_fitness
            # 如果新解的适应度优于当前解,则用新解替换当前解
            if new_fitness > evaluate_model(*solutions[i]):
                solutions[i] = new_solution

        # 观察蜂阶段
        for i in range(n_onlookers):
            # 随机选择一个雇佣蜜蜂的解
            employed_bee = random.choice(solutions)
            # 生成新的解
            new_max_depth = random.randint(max_depth_min, max_depth_max)
            new_min_samples_split = random.randint(min_samples_split_min, min_samples_split_max)
            new_solution = (new_max_depth, new_min_samples_split)
            # 评估新解的适应度
            new_fitness = evaluate_model(new_max_depth, new_min_samples_split)
            # 更新最优解
            if new_fitness > best_fitness:
                best_solution = new_solution
                best_fitness = new_fitness
            # 如果新解的适应度优于雇佣蜜蜂的解,则用新解替换雇佣蜜蜂的解
            if new_fitness > evaluate_model(*employed_bee):
                solutions[solutions.index(employed_bee)] = new_solution

    return best_solution

运行ABC算法:

best_max_depth, best_min_samples_split = artificial_bee_colony()

print("最佳max_depth:", best_max_depth)
print("最佳min_samples_split:", best_min_samples_split)
print("对应的准确率:", evaluate_model(best_max_depth, best_min_samples_split))

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
人工蜂群算法(Artificial Bee Colony Algorithm,ABC)是一种群体智能算法,可以用于求解优化问题。TSP(Traveling Salesman Problem)是一个著名的组合优化问题,其目标是找到一条最短的路径,使得旅行家可以经过所有城市并回到起点。 下面是利用 Python 实现人工蜂群算法优化求解 TSP 的步骤: 1. 定义问题:TSP 问题可以表示为一个图,其中每个城市表示一个节点,城市之间的距离表示边。我们需要找到一条路径,使得经过每个节点一次并返回起点的路径长度最小。 2. 定义蜜蜂:在 ABC 算法中,有三种蜜蜂:雇佣蜜蜂、侦查蜜蜂和观察蜜蜂。我们可以用 Python 类来表示这些蜜蜂。 3. 初始化蜜蜂群体:我们需要初始化一群雇佣蜜蜂,每个雇佣蜜蜂都代表一条路径。我们可以随机生成一些路径作为初始路径。 4. 计算适应度:我们需要计算每个雇佣蜜蜂的适应度,即路径长度。我们可以使用 TSP 问题中的欧几里得距离公式来计算两个城市之间的距离。 5. 进行搜索:在搜索过程中,我们需要让雇佣蜜蜂和侦查蜜蜂搜索新的解,并交换信息。我们还需要让观察蜜蜂选择最优解并更新雇佣蜜蜂的位置。 6. 更新最优解:我们需要记录最优路径和最优路径长度。 7. 停止条件:我们可以设置一个停止条件,例如连续多次迭代后最优解没有发生变化,或者达到了预设的迭代次数。 下面是 Python 代码实现: ```python import random import math # 问题定义 class TSP: def __init__(self, cities): self.cities = cities self.n = len(cities) def distance(self, i, j): xi, yi = self.cities[i] xj, yj = self.cities[j] return math.sqrt((xi-xj)**2 + (yi-yj)**2) def path_length(self, path): return sum([self.distance(path[i], path[(i+1)%self.n]) for i in range(self.n)]) # 蜜蜂类 class Bee: def __init__(self, path): self.path = path self.fitness = None # 雇佣蜜蜂类 class EmployedBee(Bee): def search(self, limit): # 从路径中随机选择两个城市 i, j = random.sample(range(len(self.path)), 2) # 生成新解 new_path = self.path.copy() new_path[i], new_path[j] = new_path[j], new_path[i] # 计算适应度 new_fitness = problem.path_length(new_path) # 如果新解更优,则更新 if new_fitness < self.fitness: self.path = new_path self.fitness = new_fitness limit[0] = 0 else: limit[0] += 1 # 侦查蜜蜂类 class ScoutBee(Bee): def search(self): # 生成新解 new_path = random.sample(self.path, len(self.path)) # 计算适应度 new_fitness = problem.path_length(new_path) # 更新解 self.path = new_path self.fitness = new_fitness # 观察蜜蜂类 class OnlookerBee(Bee): def search(self, limit, fitness_sum): # 选择一条路径 i = random.choices(range(len(employed_bees)), weights=fitness_sum)[0] employed_bee = employed_bees[i] # 从路径中随机选择两个城市 i, j = random.sample(range(len(employed_bee.path)), 2) # 生成新解 new_path = employed_bee.path.copy() new_path[i], new_path[j] = new_path[j], new_path[i] # 计算适应度 new_fitness = problem.path_length(new_path) # 如果新解更优,则更新 if new_fitness < self.fitness: self.path = new_path self.fitness = new_fitness employed_bee.path = new_path employed_bee.fitness = new_fitness limit[0] = 0 else: limit[0] += 1 # 初始化问题和蜜蜂 cities = [(random.uniform(0, 1), random.uniform(0, 1)) for _ in range(20)] problem = TSP(cities) employed_bees = [EmployedBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] scout_bees = [ScoutBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] onlooker_bees = [OnlookerBee(random.sample(range(problem.n), problem.n)) for _ in range(10)] # 迭代搜索 best_path = None best_fitness = math.inf limit = [0] for _ in range(100): # 计算适应度 for bee in employed_bees+scout_bees+onlooker_bees: bee.fitness = problem.path_length(bee.path) fitness_sum = [sum([1/bee.fitness for bee in employed_bees+onlooker_bees])] * len(employed_bees+onlooker_bees) # 雇佣蜜蜂搜索 for bee in employed_bees: bee.search(limit) # 侦查蜜蜂搜索 for bee in scout_bees: bee.search() # 观察蜜蜂搜索 for bee in onlooker_bees: bee.search(limit, fitness_sum) # 更新最优解 for bee in employed_bees+scout_bees+onlooker_bees: if bee.fitness < best_fitness: best_path = bee.path best_fitness = bee.fitness # 检查停止条件 if limit[0] >= 20: break # 输出结果 print(best_path) print(best_fitness) ``` 在这个例子中,我们使用了 20 个随机生成的城市,并且每个蜜蜂代表一条路径。我们迭代了 100 次,并记录了最优路径和最优路径长度。最后,我们输出了最优路径和最优路径长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值