本篇接上篇继续针对在Meta FAIR担任研究总监的田渊栋于某站上分享的近期一系列关于符号推理与神经网络推理观点进行分析与思考。
在“上篇”中,我们针对讲者Option2中的前两种将符号与神经推理集成的路线和方法进行了讲述与思考延展:可以说第一种是神经网络在test-time以符号为导向的Tool use,第二种是依赖符号化本身内在的形式化机理在train-time侧对神经网络的数据反馈与知识压缩,即现在比较热的类o1范式,RL—CoT/MCTS/RM→LLMs....然而我们也发现上述两种融合路线不管在任务“推理时”还是“训练时”并未全完统一,即至少在任务构造时不那么的End2End,只能说为符号与神经网络推理发挥各自优势实现融合提供了一种技术上的可能与理论上的衔接。
在Option2的第三个子路线里,讲者通过举例一个Embedding Table Placement任务用以阐释存在于Original Space的非线性优化问题如何映射为Surrogate optimization线性问题求解并达到原有非线性问题的最优解,并讲述了在每个步骤可微的前提下采用的反向传播算法进行“End to End”的Gradient-Based Optimization即梯度下降,以优化最终的映射函数,最终将神经网络与符号表示串联起来,实现反向传递,即某种程度上的“End2End”。
基于这条路线,讲者进一步引入并介绍了其工作进展-SurCo算法及其几个变种:SurCo-zero/SurCo-prior/SurCo-hybrid,并将任务扩展到另一个需要利用麦克斯韦方程和傅立叶频域变换双反馈对物理现象进行真实模拟的复杂设计问题——逆向光子设计(Inverse Photonic Design)任务上,以指出此种路线或方法的有效性及所具备的技术前景和应用价值,尝试构建符号与神经网络推理阶段性融合与统一范式。
在结合上述Option2对于构建Symbol&Neural Hybrid Syste三种路线的讲述后,最终,讲者抛出了其终极命题思考:“Does Deep Model Actually Converge to Anything Symbolic?”即神经网络求解在深层结构上与符号系统的统一,以进一步探索符号和神经推理的底层逻辑与联系。
未完待续,本篇为中篇,敬请期待下(终)篇!