Alxenet论文解读

在ImageNet竞赛中,我们的大型深度卷积网络实现了显著的性能提升,达到37.5%的top1错误率和17.0%的top5错误率。网络包含6500万参数,5个卷积层和3个全连接层,通过使用非饱和神经元和高效GPU实现快速训练。引入dropout正则化有效避免过拟合,最终在ILSVRC-2012比赛中获得15.3%的前5名错误率。
摘要由CSDN通过智能技术生成

论文地址,点这里

摘要

在ImageNet挑战赛中我们训练了一个大型的深度卷积网络,在测试数据集上,我们取得了top1和top5的错误率分别为37.5%和17.0%,比之前的水平有很大的提高。改神经网络有6500万个参数和65万个神经元,改网络有5个卷积层(其中一部分卷积层需要经过最大池化层)和3个全连接层(最后一层为1000类的softmax层),为了使训练更快,我们使用了非饱和神经元和一个非常高效的GPU实现卷积运算.为了减少全连通层的过拟合,我们采用了一种最近发展起来的正则化方法——dropout,它被证明是非常有效的。我们还在ILSVRC-2012比赛中运用了了该模型的一个变体,并获得了15.3%的前5名测试错误率,而第二名获得了26.2%的错误率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值