考研数学--一元函数微分学概念与计算

本文介绍了微分学中的基本概念,包括导数的定义、单侧导数、无穷导数及其几何意义。导数描述了函数在某一点的瞬时变化率,其值等于该点切线的斜率。高阶导数进一步探讨函数的变化规律。文章还提及了切线和法线的方程,但内容不完整,更新日期为2021.03.01。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导数

导数的概念

y = f(x) 定义在区间I上,x = x0 加增量 Δ \Delta Δx,x0∈I,x0+ Δ \Delta Δx∈I, Δ \Delta Δy = f(x0+ Δ \Delta Δx)-f(x0) 。若 lim ⁡ x → 0 △ y △ x \lim_{x \to 0}\frac{△y}{△x} limx0xy存在,则f(x)在x0上可导,己先即为f(x)在x0处导数。
f ′ ( x 0 ) = lim ⁡ △ x → 0 △ y △ x = lim ⁡ △ x → 0 f ( x 0 + △ x ) − f ( x 0 ) △ x f'(x_0) = \lim_{△x \to 0}\frac{△y}{△x} = \lim_{△x \to 0}\frac{f(x_0+△x)-f(x_0)}{△x} f(x0)=x0limxy=x0limxf(x0+x)f(x0

内容概要:《2024年中国物联网产业创新白皮书》由深圳市物联网产业协会AIoT星图研究院联合编制,汇集了全国30多个省市物联网组织的智慧。白皮书系统梳理了中国物联网产业的发展历程、现状及未来趋势,涵盖了物联网的概念、产业结构、市场规模、投融资情况、面临的问题机遇。书中详细分析了感知层、传输层、平台层及应用层的关键技术,探讨了智慧城市、智能工业、车联网、智慧医疗等九大产业物联网应用领域,以及消费物联网的发展特征热门单品。此外,白皮书还关注了物联网数据安全、法规遵从、人才短缺等挑战,并提出了相应的解决方案。 适用人群:物联网从业者、企业决策者、政策制定者及相关研究机构。 使用场景及目标:①帮助从业者深入了解物联网产业的现状和发展趋势;②为企业决策者提供战略规划依据;③为政策制定者提供政策支持和法规制定参考;④为研究机构提供详尽的数据和案例支持。 其他说明:白皮书不仅限于技术科普,更从宏观角度结合市场情况,多维度讨论了物联网产业生态,旨在为物联网企业、从业者找到最适合的技术应用场景,促进产业健康发展。报告还特别鸣谢了参市场调研的企业,感谢他们提供的宝贵行业信息。由于时间和资源的限制,报告可能存在信息不充分之处,欢迎各界人士提出宝贵意见。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值