不等式约束的拉格朗日乘数法简要说明

前提

最近做一个优化问题用到拉格朗日乘数法,时间比较琐碎,搞了好久。现在理清了,记录下。

例1:极值点在可行域内

m i n { f ( x 1 , x 2 ) } = ( x 1 − 1 ) 2 + ( x 2 − 1 ) 2 + 1 s . t . g 1 ( x 1 ) = x 1 − 2 ≤ 0 g 1 ( x 2 ) = x 2 − 2 ≤ 0 {\rm{min}}\{f(x_1,x_2)\}=(x_1-1)^2+(x_2-1)^2+1 \\ {\rm{s.t.}} \quad g_1(x_1)=x_1-2\leq0 \\ \quad\quad\quad g_1(x_2)=x_2-2\leq0 min{f(x1,x2)}=(x11)2+(x21)2+1s.t.g1(x1)=x120g1(x2)=x220

1.1 构建拉格朗日函数

L ( x 1 , x 2 , μ 1 , μ 2 ) = f ( x 1 , x 2 ) + μ 1 g 1 ( x 1 ) + μ 2 g 2 ( x 2 ) μ 1 g 1 ( x 1 ) = 0 μ 2 g 2 ( x 2 ) = 0 μ 1 , μ 2 ≥ 0 L(x_1,x_2,\mu_1,\mu_2)=f(x_1,x_2)+\mu_1g_1(x_1)+\mu_2g_2(x_2)\\ \mu_1g_1(x_1)=0 \\ \mu_2g_2(x_2)=0 \\ \mu_1,\mu_2 \geq 0 L(x1,x2,μ1,μ2)=f(x1,x2)+μ1g1(x1)+μ2g2(x2)μ1g1(x1)=0μ2g2(x2)=0μ1,μ20

1.2 梯度方程

根据拉格朗日乘数法的思想,在极值处应有梯度和为0的情况,即
Δ L ( x 1 , x 2 , μ 1 , μ 2 ) = Δ f ( x 1 , x 2 ) + μ 1 Δ g 1 ( x 1 ) + μ 2 Δ g 2 ( x 2 ) = 0 μ 1 g 1 ( x 1 ) = 0 μ 2 g 2 ( x 2 ) = 0 μ 1 , μ 2 ≥ 0 \Delta L(x_1, x_2,\mu_1,\mu_2) \\= \Delta f(x_1,x_2)+\mu_1 \Delta g_1(x_1)+\mu_2 \Delta g_2(x_2)=0\\ \mu_1g_1(x_1)=0 \\ \mu_2g_2(x_2)=0 \\ \mu_1,\mu_2 \geq 0 ΔL(x1,x2,μ1,μ2)=Δf(x1,x2)+μ1Δg1(x1)+μ2Δg2(x2)=0μ1g1(x1)=0μ2g2(x2)=0μ1,μ20
注意,由于有 μ i x i \mu_ix_i μixi项,上面这个已经不是线性方程组了
代入顶端的方程,得到
2 x 1 − 2 + μ 1 = 0 2 x 2 − 2 + μ 2 = 0 μ 1 ( x 1 − 2 ) = 0 μ 2 ( x 2 − 2 ) = 0 μ 1 , μ 2 ≥ 0 2x_1-2+\mu_1=0\\ 2x_2-2+\mu_2=0\\ \mu_1(x_1-2)=0\\ \mu_2(x_2-2)=0\\ \mu_1,\mu_2 \geq 0 2x12+μ1=02x22+μ2=0μ1(x12)=0μ2(x22)=0μ1,μ20

因为不是线性方程组,所以分情况讨论

case1: μ 1 = 0 , μ 2 ≠ 0 \mu_1=0,\mu_2 \neq0 μ1=0,μ2=0
∵ μ 2 ≠ 0 \because \mu_2 \neq0 μ2=0
∴ x 2 = 2 \therefore x_2 = 2 x2=2

2 x 2 − 2 + μ 2 = 0 2x_2-2+\mu_2=0 2x22+μ2=0
中, μ 2 = − 2 \mu_2=-2 μ2=2,这与 μ 2 ≥ 0 \mu_2\geq0 μ20矛盾。

case2: μ 1 ≠ 0 , μ 2 = 0 \mu_1\neq0,\mu_2 =0 μ1=0,μ2=0
∵ μ 1 ≠ 0 \because \mu_1 \neq0 μ1=0
∴ x 1 = 2 \therefore x_1 = 2 x1=2

2 x 1 − 2 + μ 1 = 0 2x_1-2+\mu_1=0 2x12+μ1=0
中, μ 1 = − 2 \mu_1=-2 μ1=2,这与 μ 1 ≥ 0 \mu_1\geq0 μ10矛盾。

case3: μ 1 ≠ 0 , μ 2 ≠ 0 \mu_1\neq0,\mu_2 \neq0 μ1=0,μ2=0
∵ μ 1 ≠ 0 \because \mu_1 \neq0 μ1=0
∴ x 1 = 2 \therefore x_1 = 2 x1=2

2 x 1 − 2 + μ 1 = 0 2x_1-2+\mu_1=0 2x12+μ1=0
中, μ 1 = − 2 \mu_1=-2 μ1=2,这与 μ 1 ≥ 0 \mu_1\geq0 μ10矛盾。 μ 2 , x 2 \mu_2,x_2 μ2,x2亦矛盾。

case4: μ 1 = 0 , μ 2 = 0 \mu_1=0,\mu_2 =0 μ1=0,μ2=0
∵ μ 1 = 0 , μ 2 = 0 \because \mu_1=0,\mu_2 =0 μ1=0,μ2=0
∴ x 1 = 1 , x 2 = 1 \therefore x_1 = 1,x_2 = 1 x1=1x2=1
此时, ( x 1 = 1 , x 2 = 1 ) (x_1 = 1,x_2 = 1) (x1=1x2=1)
在可行域
s . t . g 1 ( x 1 ) = x 1 − 2 ≤ 0 g 1 ( x 2 ) = x 2 − 2 ≤ 0 {\rm{s.t.}} \quad g_1(x_1)=x_1-2\leq0 \\ \quad\quad\quad g_1(x_2)=x_2-2\leq0 s.t.g1(x1)=x120g1(x2)=x220
范围内,是极值。

例2:极值点在可行域外,此时最值出现在边界条件上

m i n { f ( x 1 , x 2 ) } = ( x 1 − 1 ) 2 + ( x 2 − 1 ) 2 + 1 s . t . g 1 ( x 1 ) = x 1 − 2 ≤ 0 g 1 ( x 2 ) = 2 − x 2 ≤ 0 {\rm{min}}\{f(x_1,x_2)\}=(x_1-1)^2+(x_2-1)^2+1 \\ {\rm{s.t.}} \quad g_1(x_1)=x_1-2\leq0 \\ \quad\quad\quad g_1(x_2)=2-x_2\leq0 min{f(x1,x2)}=(x11)2+(x21)2+1s.t.g1(x1)=x120g1(x2)=2x20

2.1构建拉格朗日函数

L ( x 1 , x 2 , μ 1 , μ 2 ) = f ( x 1 , x 2 ) + μ 1 g 1 ( x 1 ) + μ 2 g 2 ( x 2 ) μ 1 g 1 ( x 1 ) = 0 μ 2 g 2 ( x 2 ) = 0 μ 1 , μ 2 ≥ 0 L(x_1,x_2,\mu_1,\mu_2)=f(x_1,x_2)+\mu_1g_1(x_1)+\mu_2g_2(x_2)\\ \mu_1g_1(x_1)=0 \\ \mu_2g_2(x_2)=0 \\ \mu_1,\mu_2 \geq 0 L(x1,x2,μ1,μ2)=f(x1,x2)+μ1g1(x1)+μ2g2(x2)μ1g1(x1)=0μ2g2(x2)=0μ1,μ20

2.2梯度方程

根据拉格朗日乘数法的思想,在极值处应有梯度和为0的情况,即
Δ L ( x 1 , x 2 , μ 1 , μ 2 ) = Δ f ( x 1 , x 2 ) + μ 1 Δ g 1 ( x 1 ) + μ 2 Δ g 2 ( x 2 ) = 0 μ 1 g 1 ( x 1 ) = 0 μ 2 g 2 ( x 2 ) = 0 μ 1 , μ 2 ≥ 0 \Delta L(x_1, x_2,\mu_1,\mu_2) \\= \Delta f(x_1,x_2)+\mu_1 \Delta g_1(x_1)+\mu_2 \Delta g_2(x_2)=0\\ \mu_1g_1(x_1)=0 \\ \mu_2g_2(x_2)=0 \\ \mu_1,\mu_2 \geq 0 ΔL(x1,x2,μ1,μ2)=Δf(x1,x2)+μ1Δg1(x1)+μ2Δg2(x2)=0μ1g1(x1)=0μ2g2(x2)=0μ1,μ20
代入顶端的方程,得到
2 x 1 − 2 + μ 1 = 0 2 x 2 − 2 − μ 2 = 0 μ 1 ( x 1 − 2 ) = 0 μ 2 ( 2 − x 2 ) = 0 μ 1 , μ 2 ≥ 0 2x_1-2+\mu_1=0\\ 2x_2-2-\mu_2=0\\ \mu_1(x_1-2)=0\\ \mu_2(2-x_2)=0\\ \mu_1,\mu_2 \geq 0 2x12+μ1=02x22μ2=0μ1(x12)=0μ2(2x2)=0μ1,μ20

分情况讨论

case1: μ 1 = 0 , μ 2 = 0 \mu_1=0,\mu_2 =0 μ1=0,μ2=0
∵ μ 1 = 0 , μ 2 = 0 \because \mu_1=0,\mu_2 =0 μ1=0,μ2=0
∴ x 1 = 1 , x 2 = 1 \therefore x_1=1,x_2=1 x1=1,x2=1
其中 x 2 = 1 x_2=1 x2=1 不在 g 2 ( x 2 ) = 2 − x 2 ≤ 0 g_2(x_2)=2-x_2\leq0 g2(x2)=2x20 范围内,矛盾。

case2: μ 1 ≠ 0 , μ 2 = 0 \mu_1\neq0,\mu_2 =0 μ1=0,μ2=0
∵ μ 1 ≠ 0 , μ 2 = 0 \because \mu_1 \neq0, \mu_2 = 0 μ1=0,μ2=0
∴ x 1 = 2 , x 2 = 1 \therefore x_1 = 2,x_2=1 x1=2,x2=1 μ 1 = − 2 \mu_1 = -2 μ1=2
其中 μ 1 = − 2 \mu_1 = -2 μ1=2 μ 1 ≥ 0 \mu_1 \geq 0 μ10矛盾。

case3: μ 1 ≠ 0 , μ 2 ≠ 0 \mu_1\neq0,\mu_2 \neq0 μ1=0,μ2=0
∵ μ 1 ≠ 0 , μ 2 ≠ 0 \because \mu_1 \neq0, \mu_2 \neq 0 μ1=0,μ2=0
∴ x 1 = 2 , x 2 = 2 \therefore x_1 = 2,x_2= 2 x1=2,x2=2
显然不在可行域
s . t . g 1 ( x 1 ) = x 1 − 2 ≤ 0 g 1 ( x 2 ) = x 2 − 2 ≤ 0 {\rm{s.t.}} \quad g_1(x_1)=x_1-2\leq0 \\ \quad\quad\quad g_1(x_2)=x_2-2\leq0 s.t.g1(x1)=x120g1(x2)=x220
范围内,矛盾。

case4: μ 1 = 0 , μ 2 ≠ 0 \mu_1=0,\mu_2\neq0 μ1=0,μ2=0
∵ μ 1 = 0 , μ 2 ≠ 0 \because \mu_1=0,\mu_2\neq0 μ1=0,μ2=0
∴ x 1 = 1 , x 2 = 2 \therefore x_1 = 1,x_2=2 x1=1,x2=2 μ 2 = 2 \mu_2 = 2 μ2=2
符合条件,因此 x 1 = 1 , x 2 = 2 , μ 1 = 0 , μ 2 = 2 x_1=1,x_2=2,\mu_1=0,\mu_2=2 x1=1,x2=2,μ1=0,μ2=2是最值所在。

小结

松弛因子 μ i = 0 \mu_i=0 μi=0,说明极值点 x ∗ x^* x满足对应的不等式
g i ≤ 0 g_i\leq0 gi0 μ i ≠ 0 \mu_i\neq0 μi=0时,则最值点出现在边界条件
g i = 0 g_i=0 gi=0上。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值