卡尔滤波算法 java_卡尔曼滤波算法及其代码

本文介绍了卡尔曼滤波的基本原理,包括状态转移矩阵、观测矩阵和递推估计算法。提供了C语言和C++的实现代码,帮助理解滤波过程。
摘要由CSDN通过智能技术生成

下面整篇文章都是转载的。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为: 预估计X(k)^= F(k,k-1)·X(k-1)

计算预估计协方差矩阵

C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'

Q(k) = U(k)×U(k)'

计算卡尔曼增益矩阵

K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)

R(k) = N(k)×N(k)'

更新估计

X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]

计算更新后估计协防差矩阵

C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'

X(k+1) = X(k)~

C(k+1) = C(k)~

重复以上步骤

其c语言实现代码如下:

731655954c7be9d8835ece551b5385f8.png#include "stdlib.h"

731655954c7be9d8835ece551b5385f8.png #include "rinv.c"

731655954c7be9d8835ece551b5385f8.png int lman(n,m,k,f,q,r,h,y,x,p,g)

731655954c7be9d8835ece551b5385f8.png int n,m,k;

731655954c7be9d8835ece551b5385f8.png double f[],q[],r[],h[],y[],x[],p[],g[];

24a924a57ba6b3f2b51fc9edb7ea4186.png

9310e85a14af99de4811ff4c77f1f911.png

222530190136c9c4cfd237cc0d5cff99.png{ int i,j,kk,ii,l,jj,js;

1408c5260b2f05e450dee929db9be5f7.png double *e,*a,*b;

1408c5260b2f05e450dee929db9be5f7.png e=malloc(m*m*sizeof(double));

1408c5260b2f05e450dee929db9be5f7.png l=m;

1408c5260b2f05e450dee929db9be5f7.png if (l

1408c5260b2f05e450dee929db9be5f7.png a=malloc(l*l*sizeof(double));

1408c5260b2f05e450dee929db9be5f7.png b=malloc(l*l*sizeof(double));

1408c5260b2f05e450dee929db9be5f7.png for (i=0; i<=n-1; i++)

1408c5260b2f05e450dee929db9be5f7.png for (j=0; j<=n-1; j++)

715f2d05503b99d41f3b6ba2cdccc84d.png

e083dfde5a91f50979fe8979b4012b9d.png

222530190136c9c4cfd237cc0d5cff99.png{ ii=i*l+j; a[ii]=0.0;

1408c5260b2f05e450dee929db9be5f7.png for (kk=0; kk<=n-1; kk++)

1408c5260b2f05e450dee929db9be5f7.png a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];

5bcb1807ee3e00d2b3c225f0b3f5c751.png }

1408c5260b2f05e450dee929db9be5f7.png for (i=0; i<=n-1; i++)

1408c5260b2f05e450dee929db9be5f7.png for (j=0; j<=n-1; j++)

715f2d05503b99d41f3b6ba2cdccc84d.png

e083dfde5a91f50979fe8979b4012b9d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值