卡尔曼滤波的五大公式及python代码示例

一、系统的状态方程

状态方程是根据上一时刻的状态和控制变量来推测此刻的状态
在这里插入图片描述

  • x k x_{k} xk 是状态分量的 n n n维矢量
  • A A A 是  n ∗ n n * n nn 的状态转移矩阵,也就是对目标状态转换的猜想模型,是已知的
  • u k − 1 u_{k-1} uk1 是新的,让系统可以接受外部控制
  • B B B 是  n ∗ c n * c nc 矩阵,将输入转换为状态的矩阵
  • w k − 1 w_{k-1} wk1 是预测过程的噪声,对应 x k x_{k} xk中每个分量的噪声,期望为0,协方差为 Q Q Q的高斯白噪声

二、观测方程

在这里插入图片描述

  • H H H 是  m ∗ n m * n mn矩阵,是状态变量(观测)的转换矩阵,表示将状态和观测连接起来的关系,卡尔曼滤波里为线性关系,它负责将 m 维的测量值转换到 n 维,使之符合状态变量的数学形式,是滤波的前提条件之一。
  • v k v_{k} vk 观测噪声,服从高斯分布 N ( 0 , R ) N(0, R) N(0,R) , R R R 即下文测量噪声

三、五大公式

以下摘自
卡尔曼滤波五个公式各个参数的意义

  • 信息过程足够精确的模型,是由白噪声所激发的线性(也可以是时变)的动态系统
  • 每次测量的信号都包含这附加的白噪声分量
    当满足以上假设时,可以应用卡尔曼滤波算法

卡尔曼滤波算法有两个基本假设:

卡尔曼滤波算法分为两步:预测和更新

  • 预测 : 根据上一时刻( k - 1 k - 1 k1 时刻) 的后验估计值来估计当前时刻( k k k 时刻) 的状态,得到 k k k 时刻的先验估计值;
  • 更新: 使用当前时刻的测量值来更正预测阶段估计值,得到当前时刻的后验估计值。
    卡尔曼滤波器可以分为时间更新方程和测量更新方程。时间更新方程(即预测阶段)根据前一时刻的状态估计值推算当前时刻的状态变量先验估计值和误差协方差先验估计值; 测量更新方程(即更新阶段)负责将先验估计和新的测量变量结合起来构造改进的后验估计。时间更新方程和测量更新方程也被称为预测方程和校正方程。因此卡尔曼算法是一个递归的预测—校正方法。

在这里插入图片描述

  • 1,: 分别表示 k - 1 时刻和 k 时刻的后验状态估计值,是滤波的结果之一,即更新后的结果,也叫最优估计(估计的状态,根据理论,我们不可能知道每时刻状态的确切结果所以叫估计)。

  • 2,: k 时刻的先验状态估计值,是滤波的中间计算结果,即根据上一时刻(k-1时刻)的最优估计预测的k时刻的结果,是预测方程的结果。

  • 3,分别表示 k - 1 时刻和 k 时刻的后验估计协方差(即的协方差,表示状态的不确定度),是滤波的结果之一。

  • 4,k 时刻的先验估计协方差(的协方差),是滤波的中间计算结果。

  • 5,是状态变量到测量(观测)的转换矩阵,表示将状态和观测连接起来的关系,卡尔曼滤波里为线性关系,它负责将 m 维的测量值转换到 n 维,使之符合状态变量的数学形式,是滤波的前提条件之一。

  • 6,测量值(观测值),是滤波的输入。

  • 7,滤波增益矩阵,是滤波的中间计算结果,卡尔曼增益,或卡尔曼系数。

  • 8,状态转移矩阵,实际上是对目标状态转换的一种猜想模型。例如在机动目标跟踪中, 状态转移矩阵常常用来对目标的运动建模,其模型可能为匀速直线运动或者匀加速运动。当状态转移矩阵不符合目标的状态转换模型时,滤波会很快发散。

  • 9,Q:过程激励噪声协方差(系统过程的协方差)。该参数被用来表示状态转换矩阵与实际过程之间的误差。因为我们无法直接观测到过程信号, 所以 Q 的取值是很难确定的。是卡尔曼滤波器用于估计离散时间过程的状态变量,也叫预测模型本身带来的噪声。状态转移协方差矩阵
     

  • 10:R: 测量噪声协方差。滤波器实际实现时,测量噪声协方差 R一般可以观测得到,是滤波器的已知条件。

  • 11,B:是将输入转换为状态的矩阵

四、Python代码

这里真实值为 x=-0.377,且假设A=1, H=1
观测值存在噪声,那么如何估计出实际的值呢?
这里给出两种方案,一种是北卡大学开源的,直接通过公式计算的结果

# -*- coding=utf-8 -*-  
  # Kalman filter example demo in Python  
     
   # A Python implementation of the example given in pages 11-15 of "An  
   # Introduction to the Kalman Filter" by Greg Welch and Gary Bishop,  
   # University of North Carolina at Chapel Hill, Department of Computer  
   # Science, TR 95-041,  
   # http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html  
     
   # by Andrew D. Straw  
   #coding:utf-8  
   import numpy  
   import pylab  
     
   #这里是假设A=1,H=1的情况  
     
   # 参数初始化  
   n_iter = 50  
   sz = (n_iter,) # size of array  
   x = -0.37727 # 真实值  
   z = numpy.random.normal(x,0.1,size=sz) # 观测值 ,观测时存在噪声
     
   Q = 1e-5 # process variance  
     
   # 分配数组空间  
   xhat=numpy.zeros(sz)      # x 滤波估计值  
   P=numpy.zeros(sz)         # 滤波估计协方差矩阵  
   xhatminus=numpy.zeros(sz) #  x 估计值  
   Pminus=numpy.zeros(sz)    # 估计协方差矩阵  
   K=numpy.zeros(sz)         # 卡尔曼增益  
     
   R = 0.1**2 # estimate of measurement variance, change to see effect  
     
   # intial guesses  
   xhat[0] = 0.0  
   P[0] = 1.0  
     
   for k in range(1,n_iter):  
       # 预测  
       xhatminus[k] = xhat[k-1]  #X(k|k-1) = AX(k-1|k-1) + BU(k) + W(k),A=1,BU(k) = 0  
       Pminus[k] = P[k-1]+Q      #P(k|k-1) = AP(k-1|k-1)A' + Q(k) ,A=1  
     
       # 更新  
       K[k] = Pminus[k]/( Pminus[k]+R ) #Kg(k)=P(k|k-1)H'/[HP(k|k-1)H' + R],H=1  
       xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k]) #X(k|k) = X(k|k-1) + Kg(k)[Z(k) - HX(k|k-1)], H=1  
       P[k] = (1-K[k])*Pminus[k] #P(k|k) = (1 - Kg(k)H)P(k|k-1), H=1  
     
   pylab.figure()  
   pylab.plot(z,'k+',label='noisy measurements')     #观测值  
   pylab.plot(xhat,'b-',label='a posteri estimate')  #滤波估计值  
   pylab.axhline(x,color='g',label='truth value')    #真实值  
   pylab.legend()  
   pylab.xlabel('Iteration')  
   pylab.ylabel('Voltage')  
     
   pylab.figure()  
   valid_iter = range(1,n_iter) # Pminus not valid at step 0  
   pylab.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')  
   pylab.xlabel('Iteration')  
   pylab.ylabel('$(Voltage)^2$')  
   pylab.setp(pylab.gca(),'ylim',[0,.01])  
   pylab.show()  

另外一种是调用from filterpy.kalman里的卡尔曼滤波函数

from filterpy.kalman import KalmanFilter
import numpy as np
np.random.seed(0)
kf = KalmanFilter(dim_x=1, dim_z=1)
kf.F = np.array([1])
kf.H = np.array([1])
kf.R = np.array([0.1**2])
kf.P = np.array([1.0])
kf.Q = 1e-5 
xhat[0] = 0.0  
P[0] = 1.0 
for k in range(1,n_iter):  
    kf.predict()
    xhat[k] = kf.x
    kf.update(z[k], 0.1**2, np.array([1]))
    
    
    

    
pylab.figure()  
pylab.plot(z,'k+',label='noisy measurements')     #观测值  
pylab.plot(xhat,'b-',label='a posteri estimate')  #滤波估计值  
pylab.axhline(x,color='g',label='truth value')    #真实值  
pylab.legend()  
pylab.xlabel('Iteration')  
pylab.ylabel('Voltage')  

pylab.figure()  
valid_iter = range(1,n_iter) # Pminus not valid at step 0  
pylab.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate')  
pylab.xlabel('Iteration')  
pylab.ylabel('$(Voltage)^2$')  
pylab.setp(pylab.gca(),'ylim',[0,.01])  
pylab.show()  

python-opencv中的卡尔曼滤波函数

kalman = cv2.KalmanFilter(1, 1)
kalman.transitionMatrix = np.array([[1]], np.float32)  # 转移矩阵 A
kalman.measurementMatrix = np.array([[1]], np.float32)  # 测量矩阵    H
kalman.measurementNoiseCov = np.array([[1]], np.float32) * 0.01 # 测量噪声        R
kalman.processNoiseCov = np.array([[1]], np.float32) * 1e-5  # 过程噪声 Q
kalman.errorCovPost = np.array([[1.0]], np.float32)  # 最小均方误差 P

xhat = np.zeros(sz)  # x 滤波估计值 
kalman.statePost = np.array([xhat[0]], np.float32)
for k in range(1, n_iter):
#     print(np.array([z[k]], np.float32))
    mes = np.reshape(np.array([z[k]], np.float32), (1, 1))
# #     print(mes.shape)
    xhat[k] = kalman.predict()
    kalman.correct(np.array(mes, np.float32))



pylab.figure()
pylab.plot(z, 'k+', label='noisy measurements')  # 观测值
pylab.plot(xhat, 'b-', label='a posteri estimate')  # 滤波估计值
pylab.axhline(x, color='g', label='truth value')  # 真实值
pylab.legend()
pylab.xlabel('Iteration')
pylab.ylabel('Voltage')
pylab.show() 

三者都能得到同一结果
在这里插入图片描述

  • 53
    点赞
  • 398
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
要将DeepSORT中的卡尔曼滤波改进为扩展卡尔曼滤波(EKF)的Python实现,您可以按照以下步骤进行: 1. 首先,确保您已经安装了NumPy和SciPy库,它们是进行数值计算和优化的常用库。 2. 在DeepSORT的代码中,找到卡尔曼滤波器的实现部分。通常,这部分代码涉及状态估计和误差协方差的更新。 3. 根据您的非线性系统模型,将状态转移矩阵和观测模型矩阵进行线性化。这可以通过计算雅可比矩阵来实现。 4. 在状态转移函数中,使用线性化后的模型来更新状态转移矩阵。在观测函数中,使用线性化后的模型来更新观测模型矩阵。 5. 更新卡尔曼增益的计算。使用线性化后的模型来计算卡尔曼增益,以便在更新状态估计时考虑非线性性。 6. 更新误差协方差矩阵。使用更新的卡尔曼增益和线性化后的模型来更新误差协方差矩阵。 以下是一个简单的示例代码,演示了如何在Python中实现扩展卡尔曼滤波: ```python import numpy as np # 定义状态转移函数 def state_transition_function(x): # 根据您的非线性系统模型,编写状态转移函数 # 返回状态转移矩阵F和状态转移向量f ... # 定义观测函数 def observation_function(x): # 根据您的非线性系统模型,编写观测函数 # 返回观测模型矩阵H和观测向量h ... # 定义扩展卡尔曼滤波的主要步骤 def extended_kalman_filter(x, P, z): # 预测步骤 F, f = state_transition_function(x)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值