多模态融合能够处理和关联来自不同模态的信息,提高决策的准确性。这其中,时空融合通过整合不同时间和空间维度上的数据,不仅提高了模型的性能,还增强了数据在时间和空间上的表达力,让模型能够更深入地理解并解决现实世界中的动态和多维问题。
因此,多模态时空融合迅速成为了当前的学术热点,被广泛应用于医学、自动驾驶等领域。
为帮助同学们深入了解该方向,获得论文灵感,本文介绍多模态时空融合9种最新方案,可参考创新点和开源代码也整理了,方便各位理解并复现。
论文原文以及开源代码需要的同学看文末
FusionFormer: A Multi-sensory Fusion in Bird's-Eye-View and Temporal Consistent Transformer for 3D Object Detection
方法:论文提出了一种名为FusionFormer的新型多模态融合transformer框架,通过在融合编码模块中引入可变形注意力和残差结构,实现了对多模态特征的增强适应性和鲁棒性,并且无需将特征转换为鸟瞰图空间,从而避免了信息丢失。
创新点: