图像、视频最近爆火,图像处理方向的理论和应用也更多了,照旧是投稿热门。如果有同学想发论文,我推荐一个新的创新思路:用KAN做图像处理。
KAN拥有独特的架构和可学习的激活函数,它节点间的可调整激活函数可以根据图像特性自适应,精准捕捉复杂特征和模式,显著提升效率和性能。
更赞的是,通过使用预训练的KAN模型或在特定数据集上进行微调,我们可以快速获得一个性能良好的图像处理系统,无需从头开始训练整个网络,轻轻松松就能应对多种图像处理任务,比如图像分类、目标检测、语义分割等。
目前已经有研究表明,用KAN做图像处理效果出色,这里为了帮大家省了查资料的时间,我挑选了最新的9篇论文给大家参考,idea和效果都展示了,想发论文的同学抓紧啦。
论文原文+开源代码需要的同学看文末
Suitability of KANs for Computer Vision: A preliminary investigation
方法:论文评估了Kolmogorov-Arnold网络在视觉建模中的适用性和效力,重点关注图像识别任务的性能和效率。通过使用KAN的概念以及卷积和线性层的传统构建块构建了KConvKAN,在MNIST数据集上达到了99.6%的准确率。