天选思路怎能不会!小波变换+CNN完美融合,最新idea发了CV顶会!

今天给大家推荐一个涨点发顶会的好方向:小波变换+CNN。这俩热点的结合可以轻松实现“1+1>2”的效果。

这是因为,一方面小波变换可以作为预处理步骤,提取出关键的局部特征,加速CNN收敛并提升性能;另一方面,CNN可以进一步处理小波变换提取的特征,提取高级抽象表示,用于后续的分类、识别或回归任务。

因此小波变换+CNN在学术界与工业界都很热门,特别是在信号处理和图像处理等任务中,效果炸裂好,比如ECCV 2024的WTConv,一种基于小波变换的新型卷积,实现小参数大感受野,显著提升了网络性能。

目前这个方向应用广、创新空间大,想发论文的同学可以考虑,我这边也整理了11篇最新的小波变换+CNN创新方案,代码基本都有,方便大家复现找灵感。

论文原文+开源代码需要的同学看文末

Wavelet Convolutions for Large Receptive Fields

方法:作者通过引入小波变换(WT)提高卷积神经网络(CNNs)的感受野,以解决传统大核卷积的过参数化问题,提出的WTConv层作为现有架构的替代方案,不仅实现了多频率响应和抗图像污染能力,还增强了对形状的响应,填补了CNNs在低频响应上的研究空白。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值