今天给大家推荐一个涨点发顶会的好方向:小波变换+CNN。这俩热点的结合可以轻松实现“1+1>2”的效果。
这是因为,一方面小波变换可以作为预处理步骤,提取出关键的局部特征,加速CNN收敛并提升性能;另一方面,CNN可以进一步处理小波变换提取的特征,提取高级抽象表示,用于后续的分类、识别或回归任务。
因此小波变换+CNN在学术界与工业界都很热门,特别是在信号处理和图像处理等任务中,效果炸裂好,比如ECCV 2024的WTConv,一种基于小波变换的新型卷积,实现小参数大感受野,显著提升了网络性能。
目前这个方向应用广、创新空间大,想发论文的同学可以考虑,我这边也整理了11篇最新的小波变换+CNN创新方案,代码基本都有,方便大家复现找灵感。
论文原文+开源代码需要的同学看文末
Wavelet Convolutions for Large Receptive Fields
方法:作者通过引入小波变换(WT)提高卷积神经网络(CNNs)的感受野,以解决传统大核卷积的过参数化问题,提出的WTConv层作为现有架构的替代方案,不仅实现了多频率响应和抗图像污染能力,还增强了对形状的响应,填补了CNNs在低频响应上的研究空白。