可变形卷积一区TOP新思路!刷爆遥感SOTA!

今天我们来聊聊近年被广泛关注的顶刊焦点:可变形卷积+遥感。

在遥感图像中,可变形卷积在处理形变、区分目标与背景及跨场景尺度目标时,明显优于传统方法,因为它可以自适应调整采样位置,增强对形变目标的建模能力,从而更有效地应对形变问题、提升目标检测的准确性。

更亮眼的是,可变形卷积拥有很高的灵活性和适用性,很容易就集成到现有的遥感图像处理框架中,无需对原有网络进行大幅修改或重新训练,从而显著提升处理效率,可以说为遥感任务提供了新的解决方案和性能提升,也给我们提供了更多的创新空间,是个写论文搞创新的好选择。

为了方便大家找idea,我这边整理了9篇最新的可变形卷积+遥感论文,开源代码已附,强烈建议想发顶会顶刊的同学研读。

全部论文+开源代码需要的同学看文末

Fourier-Deformable Convolution Network for Road Segmentation From Remote Sensing Images

方法:论文提出了一种用于遥感图像道路分割的新型神经网络模型FDNet,结合了可变形卷积和傅里叶卷积的优点,通过引入自适应傅里叶卷积层和显著性感知变形卷积层,在复杂道路条件下实现对弱小和连续道路特征的有效捕捉,并通过拓扑约束损失函数提高了模型的分割性能。

创新点:

  • 新增SD-Conv层,通过动态偏移机制提升细微道路特征提取。

  • 自适应频率滤波器层增强全局结构特征提取,改善道路长程依赖捕获。

  • 持久同调约束理论结合softDice损失,增强复杂道路条件下模型的连续性和准确性。

Dctnet: Hybrid Network Model Fusing with Multiscale Deformable Cnn and Transformer Structure for Road Extraction from Gaofen Satellite Remote Sensing Image

方法:作者结合了可变形卷积和遥感技术的方法,用于从高分辨率的Gaofen卫星遥感图像中提取道路信息,提出了一个混合网络模型DCTNet,它结合了多尺度可变形卷积模块和Transformer结构,以提高道路提取的准确性和自动化水平。

创新点:

  • DCTNet融合CNN和Transformer,通过双分支编码器提升道路分割精确度。

  • 多尺度可变形卷积模块增强模型对道路复杂形状的适应性。

  • Transformer模型和CNN特征融合,显著提升道路提取性能,IOU和OA分别达到86.5%和97.4%。

Improved Deformable Convolution Method for Aircraft Object Detection in Flight Based on Feature Separation in Remote Sensing Images

方法:论文讨论了可变形卷积在遥感图像中的应用,提出了一种改进的可变形卷积方法,称为特征响应分离可变形卷积FRS-DCN模块,并将其应用于基于YOLOv8的目标检测模型,以提高在复杂背景下,尤其是小目标和飞行中的航空器目标的检测性能。

创新点:

  • 引入递归特征金字塔模块,提升云层干扰下目标物体的检测置信度。

  • 使用超高斯函数生成语义分割标签,减少硬标签误差,无需额外人工标注。

  • 提出含多种飞机和场景的新飞机对象数据集,约1/3图像含云干扰,支持复杂场景目标检测。

DCD-FPI: A Deformable Convolution-Based Fusion Network for Unmanned Aerial Vehicle Localization

方法:论文讨论了可变形卷积技术在遥感图像中的应用,特别是在无人机定位领域,提出了一种名为DCD-FPI的新型网络模型,结合了基于Transformer的模型和可变形卷积,以增强处理非刚性图像变形的能力并捕获详细信息。

创新点:

  • 该模块通过自适应的空间特征融合方法,将三层金字塔结构的特征图进行融合。

  • 提出了一种结合Transformer与变形卷积的新型网络模型DCD-FPI,用于无人机的视觉自定位。

  • 模型性能提升的同时,降低了计算复杂度和参数量,提高了效率。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“卷积遥感”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值