时间序列表示学习,深度学习和机器学习领域的一个重要研究方向,是一种通过学习算法将时间序列数据转换为固定长度的向量表示的技术。
这种技术能够高效地从时间序列数据中提取关键信息,降低数据维度,同时捕捉时间依赖性,增强模型泛化能力,并支持多种下游任务。在实际应用(金融、医疗、工业等)中,可以显著提升多项时间序列任务的效果,如时间序列分类、预测以及异常检测问题等。
本文介绍了时间序列表示学习最新研究进展,主要包括神经架构、以学习为中心、以数据为中心这3个创新方向,以及15篇相关顶会论文,全部都已开源,帮助大家全面掌握时间序列表示学习方法。
全部论文+开源代码需要的同学看文末
神经架构
ICML 24 Multi-Patch Prediction: Adapting LLMs for Time Series Representation Learning
方法:本文提出了aLLM4TS框架,通过将大语言模型(LLMs)用于时间序列表示学习,利用自监督多补丁预测任务重构时间序列预测,采用两阶段训练策略(因果连续预训练和多补丁微调),引入补丁解码机制,实现更有效的时间序列表示学习。
创新点