CNN+Transformer这类结构其实一直都挺火的,核心在于他们的互补性。因为在一些复杂的AI应用中,单个模型很难同时高效处理多种类型的数据。如果结合CNN在图像处理上的强大能力和Transformer在序列数据处理上的优势,就可以增加模型处理的灵活性,提高计算效率。
这种结构也是非常热门的毕业or小论文选择,刚刚过去的2024年就有相当多顶会顶刊成果,感兴趣的同学们抓紧。目前CNN+Transformer比较常见的创新就是架构设计创新、注意力机制优化、特征融合策略改进、预训练与微调策略创新、特定领域应用...
本文根据这些方向提供15个最新的CNN+Transformer创新点参考,基本都有代码可复现,帮大家节省了查找的时间,有论文需求的同学可无偿获取,希望大家科研顺利哦!
全部论文+开源代码需要的同学看文末
LEFormer: A hybrid CNN-transformer architecture for accurate lake extraction from remote sensing imagery
方法:论文提出了一种结合卷积神经网络(CNN)和Transformer的混合架构,用于从遥感图像中准确提取湖泊。SCTNet通过在训练阶段使用transformer语义信息来提高实时语义分割性能,解决了传统双分支方法中计算开销高和推理速度慢的问题,实现了新一代的状态SOTA结果。