PINN与KAN终于结合起来了!发SCI一区Top超简单的!

当前KAN仍处于早期阶段,关于它的研究还在不断探索中。最近发现它与PINN的结合有不少值得关注的成果,比如ESWA的自监督网格生成方法MeshKINN、CMAME的神经网络框架KAN-ODEs。

这方向的优势在于既能够遵循物理规律,又能够结合领域知识,给我们提供更透明、更可靠的解释,在需要高可解释性的复杂任务中非常适用,因此是工业界的香饽饽,很适合相关领域有论文需求的同学研究。

至于创新点,未来可能会往架构优化、硬件适配及跨领域应用等方面突破,不过这方向代码实现的复杂度较高,建议大家结合具体应用场景做创新。如果需要参考,可直接拿我整理的11篇KAN+PINN前沿成果,开源代码已附。

全部论文+开源代码需要的同学看文末

MeshKINN: A self-supervised mesh generation model based on Kolmogorov–Arnold-Informed neural network

方法:论文提出了一种基于PINN和KAN的自监督网格生成方法MeshKINN。该方法通过结合物理约束和傅里叶系数,自动生成高质量的网格,无需额外数据集和人工干预。

创新点:

  • 提出MeshKINN,结合KAN和PINN,实现自监督网格生成,无需标注数据。

  • 引入Navier–Lamé方程作为物理约束,确保网格符合弹性变形规律,同时利用傅里叶系数增强模型对复杂几何特征的表达能力。

  • 在复杂边界条件下生成高质量网格,优于传统方法和现有深度学习方法。

KAN-ODEs: Kolmogorov–Arnold network ordinary differential equations for learning dynamical systems and hidden physics

方法:论文提出了一种新的方法KAN-ODEs,它结合了KAN和神经常微分方程,用于学习动态系统和隐藏的物理规律。这种方法在保持Neural ODEs灵活性的同时,利用KAN的优势,如更高的精度、更强的可解释性和更少的参数,从而在数据稀疏的复杂场景中表现出色。

创新点:

  • 提出KAN-ODEs框架,将KAN与神经常微分方程结合,用于动态系统建模。

  • KAN-ODEs在保持Neural ODEs灵活性的同时,利用KAN的优势,如更高的精度、更强的可解释性和更少的参数。

  • 在多个复杂场景和数据稀疏的实验中,KAN-ODEs表现出色,能够学习符号源项和完整解剖面。

Enhancing Physics-Informed Neural Networks with a Hybrid Parallel Kolmogorov-Arnold and MLP Architecture

方法:论文提出了一种结合PINN和KAN的混合架构HPKM-PINN。通过引入一个可调的权重因子ξ,动态平衡KAN和MLP的输出,从而提升模型在函数逼近和偏微分方程求解中的性能,表现出更高的精度和稳定性。

创新点:

  • 提出了一种新型的混合架构HPKM-PINN,结合KAN和MLP的并行结构。

  • 引入可调缩放因子ξ,动态平衡KAN和MLP的输出贡献,优化高频和低频特征捕捉。

  • 在泊松方程、对流方程等经典偏微分方程上验证,精度更高、收敛更快,优于单独的KAN或MLP模型。

Adaptive training of grid-dependent physics-informed kolmogorov-arnold networks

方法:这篇论文提出了一种基于JAX的PIKANs(物理信息Kolmogorov-Arnold网络)训练方法,引入了自适应训练技术,包括状态转换和基函数设计。这些技术显著提升了PIKANs在求解PDEs时的精度和效率。

创新点:

  • 提出了一种基于JAX的快速实现框架,显著加速了KANs的训练。

  • 引入自适应训练技术,包括状态转换方法,避免网格扩展时损失函数的剧烈波动,提升训练稳定性。

  • 提出一种设计网格依赖的KANs基函数的方法,强调基函数的动态适应性,进一步优化了模型性能。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

### Pinn结合使用方式或集成方法 PINNs(Physics-Informed Neural Networks)作为种强大的工具,可以多种技术和框架相结合,以增强其性能并扩展应用范围。以下是几种常见的结合方式: #### 1. **图神经网络 (GNN) 结合** PINNs 可以 GNN 集成,形成种混合模型来解决复杂的优化问题。例如,在电力系统领域,PHYSICS-INFORMED GNN FOR NON-LINEAR CONSTRAINED OPTIMIZATION 提出了 PINCO 方法,这是种基于物理信息的图神经网络求解器,专门用于交流最优潮流问题[^1]。这种方法通过将物理约束嵌入到 GNN 中,提高了模型对复杂系统的适应性和鲁棒性。 #### 2. **有限差分法结合** 除了单独使用外,PINNs 还能传统数值方法如有限差分法联合起来解决问题。这种组合不仅保留了 PINNs 对物理规律的学习能力,还借助有限差分法提升了计算效率和精度。具体而言,Combining physics-informed graph neural network and finite difference 展示了个案例,其中两者共同作用于时空偏微分方程的正向和反演问题[^2]。这种方式特别适合处理高维动态系统中的大规模模拟任务。 #### 3. **傅里叶神经网络 (FNN) 融合** 为了进步提升捕捉周期性现象的能力,PINNs 常被 Fourier Neural Networks(FNNs) 整合在起。正如所提到的内容所示,“傅立叶神经网络利用傅里叶基函数增强了对周期性函数的表达能力”,这使得新架构更适合描述具有显著频率特性的自然过程[^4]。此类型的融合通常应用于流体力学等领域内的波传播分析或者振动模式识别等问题之中。 #### 4. **应对数据稀缺场景下的故障诊断** 当面临极端的数据缺乏情况时,PINNs 同样展现出巨大潜力。PTPAI 方法即为此类挑战提供了解决方案——它综合运用了物理驱动型深度学习生成合成样本以及特定分类策略缓解类别失衡状况;并通过迁移学习手段缩小真实世界测量值同人工制造出来的训练实例间的差距[^3]。这思路对于工业设备健康管理尤其重要,因为现场采集高质量标注资料往往成本高昂且耗时费力。 综上所述,PINN 不仅限于独立部署形式下挥作用,而且可以通过多样化途径其他先进技术协同工作,从而满足不同应用场景的需求。 ```python import torch from torch import nn class PhysicsInformedNeuralNetwork(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(PhysicsInformedNeuralNetwork, self).__init__() self.layers = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.Tanh(), nn.Linear(hidden_dim, hidden_dim), nn.Tanh(), nn.Linear(hidden_dim, output_dim) ) def forward(self, x): return self.layers(x) # Example usage of combining with other techniques such as FNN or GNN would involve extending this class. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值