近期看见很多YOLO的轻量化改进,其中拿YOLOv8n、YOLOv5改的比较多,当然还有最新版的,发一区到三区的基本都有,可创新空间很大,看来YOLO依然是我们“水论文”的好选择。
分享几个高区成果:Neurocomputing(二区)上的YOLO-ELWNet,基于YOLOv3改进,猛猛超越其他轻量级OD模型;还有Comput Electron Agric(一区)上的CO-YOLO,基于YOLO11n架构,实现大幅提高姿态识别效果。
另外还有一些新研究,非常推荐想用YOLO发论文的同学研读,论文&源码我都打包好了,目前共有10篇,无偿分享。今年也推荐各位往模型架构优化、轻量化技术结合、垂直领域定制化、训练策略与数据增强这几个方向做文章,比较好发。
全部论文+开源代码需要的同学看文末
YOLO-ELWNet: A lightweight object detection network
方法:本文提出YOLO-ELWNet,一种基于YOLO的轻量级目标检测网络。它通过优化YOLOv3的骨干网络、特征融合模块和损失函数,降低了模型参数和计算量,同时保持高检测精度,适用于车载设备等资源受限场景。
创新点:
-
提出CSS-CA模块,用于轻量级骨干网络,减少参数和计算量,保持高精度。
-
设计了一种改进的特征融合网络FPN-CSP,通过引入高效的瓶颈模块,降低了内存访问成本,增强了特征提取能力。
-
在头部模块中采用Scylla交并比损失函数,加速了模型的收敛速度,提高了训练效率。
YOLO-DLHS-P: A lightweight behavior recognition algorithm for captive pigs
方法:本文提出轻量级YOLO-DLHS-P算法,用于猪行为识别。基于YOLOv8n改进,引入C2f-DRB增强空间感知,采用LSKA注意力机制提升特征聚合,优化下采样减少信息损失,使用Shape-IoU损失函数提高精度,最后通过LAMP剪枝算法减少模型参数和计算量,实现高精度且轻量化的猪行为识别。
创新点:
-
引入C2f-DRB结构和LSKA注意力机制,增强模型的空间感知能力和特征聚合能力。
-
优化下采样算法为HWD模块,减少信息损失,提升特征提取效果。
-
使用Shape-IoU损失函数并结合LAMP剪枝算法,提高检测精度的同时显著降低模型复杂度。
LUD-YOLO: A novel lightweight object detection network for unmanned aerial vehicle
方法:论文提出了一种轻量级的无人机目标检测算法LUD-YOLO,基于YOLOv8改进,通过优化特征融合和提取,并结合网络剪枝技术,实现了模型的轻量化,同时保持了较高的检测精度,适合在无人机边缘设备上部署。
创新点:
-
提出了一种新的多尺度特征融合方法,通过自适应空间融合操作优化特征金字塔网络,解决了特征传播中的退化问题。
-
引入动态稀疏注意力机制,在减少模型参数的同时提升了特征提取能力。
-
采用网络剪枝技术优化模型,使其更轻量,更适合在无人机边缘设备上部署。
SOD-YOLO: A lightweight small object detection framework
方法:论文提出了一种轻量级的无人机小目标检测模型SOD-YOLO,基于YOLOv7改进,通过设计新的DSDM-LFIM骨干网络,减少了参数和计算量,同时提高了检测精度和速度,适合在无人机边缘设备上部署。
创新点:
-
提出了DSDM-LFIM骨干网络,包含深度浅层下采样模块和轻量级特征融合模块。
-
引入了P2小目标检测分支,专门用于检测密集且小规模的目标。
-
SOD-YOLO在保持高精度的同时显著提升了轻量化程度和实时性。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“222”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏