YOLO永不过时!全新轻量级版本拿下中科院1区TOP!创新性MAX

近期看见很多YOLO的轻量化改进,其中拿YOLOv8n、YOLOv5改的比较多,当然还有最新版的,发一区到三区的基本都有,可创新空间很大,看来YOLO依然是我们“水论文”的好选择。

分享几个高区成果:Neurocomputing(二区)上的YOLO-ELWNet,基于YOLOv3改进,猛猛超越其他轻量级OD模型;还有Comput Electron Agric(一区)上的CO-YOLO,基于YOLO11n架构,实现大幅提高姿态识别效果。

另外还有一些新研究,非常推荐想用YOLO发论文的同学研读,论文&源码我都打包好了,目前共有10篇,无偿分享。今年也推荐各位往模型架构优化、轻量化技术结合、垂直领域定制化、训练策略与数据增强这几个方向做文章,比较好发。

全部论文+开源代码需要的同学看文末

YOLO-ELWNet: A lightweight object detection network

方法:本文提出YOLO-ELWNet,一种基于YOLO的轻量级目标检测网络。它通过优化YOLOv3的骨干网络、特征融合模块和损失函数,降低了模型参数和计算量,同时保持高检测精度,适用于车载设备等资源受限场景。

创新点:

  • 提出CSS-CA模块,用于轻量级骨干网络,减少参数和计算量,保持高精度。

  • 设计了一种改进的特征融合网络FPN-CSP,通过引入高效的瓶颈模块,降低了内存访问成本,增强了特征提取能力。

  • 在头部模块中采用Scylla交并比损失函数,加速了模型的收敛速度,提高了训练效率。

YOLO-DLHS-P: A lightweight behavior recognition algorithm for captive pigs

方法:本文提出轻量级YOLO-DLHS-P算法,用于猪行为识别。基于YOLOv8n改进,引入C2f-DRB增强空间感知,采用LSKA注意力机制提升特征聚合,优化下采样减少信息损失,使用Shape-IoU损失函数提高精度,最后通过LAMP剪枝算法减少模型参数和计算量,实现高精度且轻量化的猪行为识别。

创新点:

  • 引入C2f-DRB结构和LSKA注意力机制,增强模型的空间感知能力和特征聚合能力。

  • 优化下采样算法为HWD模块,减少信息损失,提升特征提取效果。

  • 使用Shape-IoU损失函数并结合LAMP剪枝算法,提高检测精度的同时显著降低模型复杂度。

LUD-YOLO: A novel lightweight object detection network for unmanned aerial vehicle

方法:论文提出了一种轻量级的无人机目标检测算法LUD-YOLO,基于YOLOv8改进,通过优化特征融合和提取,并结合网络剪枝技术,实现了模型的轻量化,同时保持了较高的检测精度,适合在无人机边缘设备上部署。

创新点:

  • 提出了一种新的多尺度特征融合方法,通过自适应空间融合操作优化特征金字塔网络,解决了特征传播中的退化问题。

  • 引入动态稀疏注意力机制,在减少模型参数的同时提升了特征提取能力。

  • 采用网络剪枝技术优化模型,使其更轻量,更适合在无人机边缘设备上部署。

SOD-YOLO: A lightweight small object detection framework

方法:论文提出了一种轻量级的无人机小目标检测模型SOD-YOLO,基于YOLOv7改进,通过设计新的DSDM-LFIM骨干网络,减少了参数和计算量,同时提高了检测精度和速度,适合在无人机边缘设备上部署。

创新点:

  • 提出了DSDM-LFIM骨干网络,包含深度浅层下采样模块和轻量级特征融合模块。

  • 引入了P2小目标检测分支,专门用于检测密集且小规模的目标。

  • SOD-YOLO在保持高精度的同时显著提升了轻量化程度和实时性。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值