BFS 遍历迷宫 JAVA 输出所有路径

本文探讨了使用BFS(广度优先搜索)算法在迷宫中寻找最短路径的问题。通过举例说明,指出在BFS过程中,第一次出现的终点路径即为最短路径。在2x3的迷宫示例中,BFS能够以最少的步数(2步)从起点1到达终点5。此外,还提到了二叉树的BFS遍历算法,并给出了相关资源链接。
摘要由CSDN通过智能技术生成

使用BFS算法时,第一次出来的路径即是最短路径!!!!说实话,为什么是最短路径我还真不知道怎么讲清楚。举个简单的例子吧。一个2行3列的数组,第一行是1、2、3,第二行是4、5、6。把它当成一个迷宫,每个点都可以走,起点是1,终点是5。根据BFS算法:
在这里插入图片描述

  • 第一层: 1 入队
  • 第二层 : 2、4入队
  • 第三层 :先3、5入队,再5入队 (注意,这里有两个5结点,但是它们的前驱结点是不一样的,一个是2,一个是4。)

可以看到,在第三层的时候,已经到达终点了,第三层所以包含5的结点都是路径最短的,最短路径是3-1=2步。 而其他比2步要长的路径显然在第四层或者第四层以上。

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Stack;

public class MiGong {
   

	public static void main(String[] args) {
   
		int[][] A={
   
	            {
   0,0,1,0},
	            {
   0,0,1,0},
	            {
   1,0,0,0},
	            {
   0,1,0,0}
	           };
	 new MiGong().findMinRode(A);

	}
	
	class Node{
   
		int x;
		int y;
		int dis;
		Node pre;
问题描述: 以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出从入口(0,0)到出口(m-1,n-1)的通路和通路总数,或得出没有通路的结论。例如下图, 0(入口) 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0(出口) 从入口到出口有6条不同的通路。 而下图: 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 从入口到出口则没有通路。 算法设计: 给定一个m*n的长方阵表示迷宫,设计算法输出入口到出口的通路和通路总数,或得出没有通路的结论。 算法提示: 和皇后问题与分书问题类似。可以用二维数组存储迷宫数据,对于迷宫中任一位置,均可约定有东、南、西、北四个方向可通。从当前位置a(用(x,y)表示一个位置,假定它是以向右的x轴和向下的y轴组成的平面上的一个点)出发依次尝试四个方向是否有路,若某个方向的位置b可通,则按照同样的方法继续从b出发寻找。若到达出口,则找到一条通路。 数据输入: 由文件input.txt 提供输入数据。第一行是m和n的值,空格分隔,其后共m行。每行有n个数字,数和数之间用空格分隔。 结果输出: 将计算出的所有从入口到出口的通路输出到文件output.txt 中。若没有通路,则将0写入文件中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值