pandas基本操作记录

import pandas as pd #引入pandas包

读取数据,这里针对不同的数据格式要采用不同的后缀,等用到的时候再具体地查阅。

data = pd.read_csv('data.csv') #读取数据文件
print(type(data)) 
print(data)
<class 'pandas.core.frame.DataFrame'>
     x    y
0  -10  100
1   -9   81
2   -8   64
3   -7   49
4   -6   36
5   -5   25
6   -4   16
7   -3    9
8   -2    4
9   -1    1
10   0    0
11   1    1
12   2    4
13   3    9
14   4   16
15   5   25
16   6   36
17   7   49
18   8   64
19   9   81
20  10  100

读取数据之后然后对变量进行赋值,axis=1表示的是纵列

x = data.loc[:,'x'] #打印x的列
y = data.loc[:,'y'] #打印x的列
print(y)
0     100
1      81
2      64
3      49
4      36
5      25
6      16
7       9
8       4
9       1
10      0
11      1
12      4
13      9
14     16
15     25
16     36
17     49
18     64
19     81
20    100
Name: y, dtype: int64

pandas提供给我一个很好的筛选数据的命令,和对变量赋值差不多,选取特定的位置然后再给出限定条件。

c = data.loc[:,'x'][y>50] #筛选数据y>50
print(c)
0    -10
1     -9
2     -8
18     8
19     9
20    10
Name: x, dtype: int64
data_array = np.array(data) #转换为数组
print(type(data_array))
print(data_array)
<class 'numpy.ndarray'>
[[-10 100]
 [ -9  81]
 [ -8  64]
 [ -7  49]
 [ -6  36]
 [ -5  25]
 [ -4  16]
 [ -3   9]
 [ -2   4]
 [ -1   1]
 [  0   0]
 [  1   1]
 [  2   4]
 [  3   9]
 [  4  16]
 [  5  25]
 [  6  36]
 [  7  49]
 [  8  64]
 [  9  81]
 [ 10 100]]
data_new = data+10 
#print(data_new)
data_new.head() #展现部分数据
xy
00110
1191
2274
3359
4446
# data to csv file
data_new.to_csv('data_new.csv') #保存数据文件

我们想要引入新数据,可以用到的命令是pd.DataFrame(),先是用字典索引具体的数据然后用pd.DataFrame()排列起来。

x_new = {'x1':x1,'x2':x2,'x1_2':x1_2,'x2_2':x2_2,'x1_x2':x1_x2}
x_new = pd.DataFrame(x_new)
print(x_new)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值