import pandas as pd #引入pandas包
读取数据,这里针对不同的数据格式要采用不同的后缀,等用到的时候再具体地查阅。
data = pd.read_csv('data.csv') #读取数据文件
print(type(data))
print(data)
<class 'pandas.core.frame.DataFrame'>
x y
0 -10 100
1 -9 81
2 -8 64
3 -7 49
4 -6 36
5 -5 25
6 -4 16
7 -3 9
8 -2 4
9 -1 1
10 0 0
11 1 1
12 2 4
13 3 9
14 4 16
15 5 25
16 6 36
17 7 49
18 8 64
19 9 81
20 10 100
读取数据之后然后对变量进行赋值,axis=1表示的是纵列
x = data.loc[:,'x'] #打印x的列
y = data.loc[:,'y'] #打印x的列
print(y)
0 100
1 81
2 64
3 49
4 36
5 25
6 16
7 9
8 4
9 1
10 0
11 1
12 4
13 9
14 16
15 25
16 36
17 49
18 64
19 81
20 100
Name: y, dtype: int64
pandas提供给我一个很好的筛选数据的命令,和对变量赋值差不多,选取特定的位置然后再给出限定条件。
c = data.loc[:,'x'][y>50] #筛选数据y>50
print(c)
0 -10
1 -9
2 -8
18 8
19 9
20 10
Name: x, dtype: int64
data_array = np.array(data) #转换为数组
print(type(data_array))
print(data_array)
<class 'numpy.ndarray'>
[[-10 100]
[ -9 81]
[ -8 64]
[ -7 49]
[ -6 36]
[ -5 25]
[ -4 16]
[ -3 9]
[ -2 4]
[ -1 1]
[ 0 0]
[ 1 1]
[ 2 4]
[ 3 9]
[ 4 16]
[ 5 25]
[ 6 36]
[ 7 49]
[ 8 64]
[ 9 81]
[ 10 100]]
data_new = data+10
#print(data_new)
data_new.head() #展现部分数据
x | y | |
---|---|---|
0 | 0 | 110 |
1 | 1 | 91 |
2 | 2 | 74 |
3 | 3 | 59 |
4 | 4 | 46 |
# data to csv file
data_new.to_csv('data_new.csv') #保存数据文件
我们想要引入新数据,可以用到的命令是pd.DataFrame(),先是用字典索引具体的数据然后用pd.DataFrame()排列起来。
x_new = {'x1':x1,'x2':x2,'x1_2':x1_2,'x2_2':x2_2,'x1_x2':x1_x2}
x_new = pd.DataFrame(x_new)
print(x_new)