opencv+python 实现均值滤波

opencv 同时被 2 个专栏收录
10 篇文章 0 订阅

原理

均值滤波其实就是对目标像素及周边像素取平均值后再填回目标像素来实现滤波目的的方法,当滤波核的大小是 3 × 3 3\times 3 3×3时,则取其自身和周围8个像素值的均值来代替当前像素值。
均值滤波也可以看成滤波核的值均为 1 的滤波。
优点:算法简单,计算速度快;
缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分。

代码

import cv2 as cv
import numpy as np
import math
import copy

def spilt( a ):
    if a/2 == 0:
        x1 = x2 = a/2
    else:
        x1 = math.floor( a/2 )
        x2 = a - x1
    return -x1,x2

def original (i, j, k,a, b,img):
    x1, x2 = spilt(a)
    y1, y2 = spilt(b)
    temp = np.zeros(a * b)
    count = 0
    for m in range(x1, x2):
        for n in range(y1, y2):
            if i + m < 0 or i + m > img.shape[0] - 1 or j + n < 0 or j + n > img.shape[1] - 1:
                temp[count] = img[i, j, k]
            else:
                temp[count] = img[i + m, j + n, k]
            count += 1
    return  temp

def average_function(a , b ,img):
	img0 = copy.copy(img)
    for i in range (0 , img.shape[0]  ):
        for j in range (2 ,img.shape[1] ):
            for k in range (img.shape[2]):
                temp = original(i, j, k, a, b, img0)
                img[i,j,k] = int ( np.mean(temp))
    return img 
    
def main():
    img0 = cv.imread(r"noise.jpg")

    ave_img = average_function( 3 , 3, copy.copy(img0) ) #(3,3)滤波器大小 

    cv.imshow("ave_img",ave_img) 
    cv.imshow("original",img0)

    cv.waitKey(0)
    cv.destroyAllWindows()

if __name__ == "__main__":
    main()

样例

原图:

在这里插入图片描述

滤波核为 3 × 3 3\times 3 3×3的均值滤波后:

在这里插入图片描述

  • 2
    点赞
  • 0
    评论
  • 10
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值