由KKT互补松弛条件,支持向量的系数不一定为0,非支持向量的系数一定为0

从互补松弛条件的条件来看一共分成三种情况:

  1. 不等式约束等号成立,则拉格朗日乘子不为0,
  2. 不等式约束等号成立,则拉格朗日乘子为0。
  3. 不等式约束等号不成立,拉格朗日乘子为0。

不等式约束等号成立,则是支持向量
不等式约束等号不成立,则是非支持向量

延伸:

  • 如果拉格朗日乘子>0或<0,则是一定支持向量
  • 如果拉格朗日乘子=0,则不一定支持向量
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
支持向量机(Support Vector Machine, SVM)是一种常用的机器学习算法,用于进行分类和回归任务。在 SVM 中,我们尝试找到一个超平面,将两类样本分开,并且使离超平面最近的样本点与超平面的距离最大化。这些离超平面最近的样本点被称为支持向量。 为了求解 SVM 的模型参数,我们需要解决一个优化问题。这个问题的目标是最大化支持向量到超平面的距离,同时要求分类的准确性。在这个优化问题中,我们常常使用 KKT 条件来求解模型参数。然而,在求解参数 b 的值时可能会遇到死锁的情况,因为我们需要知道支持向量的值才能求解 b,而要求解支持向量的值又需要知道 b 的值。为了解决这个问题,我们引入了自由支持向量,其值为 0。通过利用自由支持向量,我们可以求解出 b 的值。 此外,SVM 还可以使用核函数来处理线性可分的情况。核函数能够将数据映射到高维空间中,使得原本线性不可分的数据在高维空间中变得线性可分。常见的核函数有线性核函数、多项式核函数和高斯核函数等。[4.1] 然而,SVM 对于大规模数据集的训练可能会变得常缓慢,尤其是在特征数量较多的情况下。如果特征数量较多而样本数量较少,SVM 的求解过程会变得常耗时。为了解决这个问题,可以采用逻辑回归或者不带核函数的支持向量机来处理。另外,如果特征的取值范围差异较大,可以考虑进行特征缩放,以提高 SVM 的性能。 总之,支持向量机是一种强大的机器学习算法,具有良好的分类和回归性能。同时,通过核函数的应用,SVM 还可以处理线性可分的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值