Ragflow框架的AI客服回答字数太长,如何优化控制在规定token内?

环境:

Ubuntu20.04

Ragflowv0.17.2

问题描述:

Ragflow框架的AI客服回答字数太长,如何优化控制在规定token内?

在这里插入图片描述
在这里插入图片描述

解决方案:

1.提示词优化

禁止回复大段文字,任何回答输出的字符一定要保持在30个token。(效果不明显)
在这里插入图片描述

2.代码优化

优化下面模块


D:\下载\rd\ragflow\rag\llm\chat_model.py


```bash
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licen
<think>好的,用户的问题是关于如何利用Token优化策略来减少API调用的成本。首先,我需要明确Token在API计费中的作用。通常,像Llama 3这样的模型会按照输入和输出的Token总数来计费,所以减少Token使用可以直接降低成本。接下来,我需要从几个方面来考虑优化策略。 首先,输入数据的优化。用户可能在发送请求时,可能包含冗余的信息。例如,如果API允许上下文对话,用户可能会重复发送之前的对话历史,这样会增加Token数量。这时候,可以考虑截断或简化历史记录,只保留关键信息。另外,提示词的设计也很重要。使用更简洁直接的指令,避免冗长的描述,可以有效减少输入Token。例如,使用“总结以下内容”而不是“请帮我将下面的内容进行概括,要求简洁明了”。 其次,输出的控制。很多API支持设置最大生成长度,比如max_tokens参数。合理设置这个参数,避免生成过长的回复,可以节省输出Token。同时,可以要求模型输出更简洁的格式,比如使用列表或缩写,减少不必要的描述词。此外,流式响应可能有助于及时截断不需要的内容,但需要确认API是否支持这一点。 然后,缓存和复用。对于一些常见的查询,如果响应内容变化不大,可以考虑缓存结果,避免重复调用。例如,用户经常询问天气情况,可以将当天的天气结果缓存起来,后续直接使用,减少API调用次数。另外,可以将多个请求合并成一个批量请求,如果API支持的话,这样可能享受批量处理的折扣,降低单位Token成本。 技术实现方面,需要监控和分析Token的使用情况。通过API返回的元数据,统计每次调用的输入输出Token数,找出高消耗的环节,进行针对性优化。同时,评估是否有必要使用更复杂的模型,有时候基础模型就能满足需求,而高级模型虽然能力强,但Token成本更高。 最后,参考站内的引用内容,用户需要高效利用模型资源,减少冗余操作。比如引用[1]提到简洁明了的回复能节省费用,引用[2]建议优化输入数据和合理安排资源。这些都可以结合起来,形成系统的优化策略。 可能用户没有明确提到的深层需求是,如何在保证服务质量的前提下进行优化,而不仅仅是减少Token数量。因此,在建议中需要平衡简洁和有效,避免过度优化导致响应质量下降。此外,用户可能还关心如何实施这些策略的具体步骤,比如如何截断历史记录,如何设置参数等,这些都需要在回答中给出具体例子或方法。 总结下来,我需要从输入优化、输出控制、缓存复用、技术实施四个方面展开,结合具体例子和站内引用,提供清晰可行的策略,帮助用户有效降低API调用成本。</think>### 如何通过Token优化策略降低API调用成本? #### 1. **输入数据优化** - **精简提示词** 使用简洁的指令代替冗长描述。例如: **冗余写法**:$“请帮我将下面的内容进行概括,要求简洁明了,不超过100字。”$ **优化写法**:$“总结以下内容(100字内):”$ 可减少约30%的输入Token[^1]。 - **截断冗余上下文** 若API支持对话历史,保留最近3-5轮对话即可,避免携带过多历史Token。例如: ```python # 仅保留最后3轮对话 truncated_history = chat_history[-3:] if len(chat_history) > 3 else chat_history ``` #### 2. **输出控制** - **限制生成长度** 通过`max_tokens`参数约束输出Token数量。例如设置`max_tokens=200`,避免生成超长文本。 ```python response = model.generate(prompt, max_tokens=200) ``` - **结构化输出要求** 明确要求模型返回列表、简写或特定格式,例如: $“用JSON格式回答,包含‘结论’和‘理由’两个字段。”$ 可减少自然语言中冗余的衔接词。 #### 3. **缓存与复用** - **高频结果缓存** 对常见查询(如FAQ)缓存响应结果,减少重复调用。例如: ```python if user_query in cached_responses: return cached_responses[user_query] ``` - **批量请求合并** 若API支持批量处理,将多个请求合并为单次调用。例如: ```python batch_prompts = [prompt1, prompt2, prompt3] batch_responses = model.batch_generate(batch_prompts) ``` #### 4. **技术实现优化** - **监控Token消耗** 分析API返回的`usage`字段(如`input_tokens`和`output_tokens`),识别高消耗场景。 ```python print(f"本次调用消耗Token: {response.usage.total_tokens}") ``` - **模型选择策略** 优先使用轻量级模型(如`llama-3-8b`)处理简单任务,仅在复杂场景下调用大模型(如`llama-3-70b`)。 #### 平衡优化与效果 需验证优化后输出的准确性,例如通过自动化测试或人工抽检,避免过度压缩导致信息缺失[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玩人工智能的辣条哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值