聚类分析tensorflow实例_k均值聚类算法原理和(TensorFlow)实现

本文介绍了k均值聚类算法的基本原理及其在无监督学习中的应用,并通过一个实例展示了如何使用TensorFlow的Estimator类KmeansClustering进行聚类分析。文章还讨论了肘部法则在确定最佳簇数量中的作用,以及k均值聚类的优缺点。
摘要由CSDN通过智能技术生成

顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律。

我们知道,在机器学习中,有三种不同的学习模式:监督学习、无监督学习和强化学习:

监督学习,也称为有导师学习,网络输入包括数据和相应的输出标签信息。例如,在 MNIST 数据集中,手写数字的每个图像都有一个标签,代表图片中的数字值。

强化学习,也称为评价学习,不给网络提供期望的输出,但空间会提供给出一个奖惩的反馈,当输出正确时,给网络奖励,当输出错误时就惩罚网络。

无监督学习,也称为无导师学习,在网络的输入中没有相应的输出标签信息,网络接收输入,但既没有提供期望的输出,也没有提供来自环境的奖励,神经网络要在这种情况下学习输入数据中的隐藏结构。无监督学习非常有用,因为现存的大多数数据是没有标签的,这种方法可以用于诸如模式识别、特征提取、数据聚类和降维等任务。

k 均值聚类是一种无监督学习方法。

还记得哈利波特故事中的分院帽吗?那就是聚类,将新学生(无标签)分成四类:格兰芬多、拉文克拉、赫奇帕奇和斯特莱林。

人是非常擅长分类的,聚类算法试图让计算机也具备这种类似的能力,聚类技术很多,例如层次法、贝叶斯法和划分法。k 均值聚类属于划分聚类方法,将数据分成 k 个簇,每个簇有一个中心,称为质心,k 值需要给定。

k 均值聚类算法的工作原理如下:

随机选择 k 个数据点作为初始质心(聚类中心)。

将每个数据点划分给距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值