题目描述
已知多项式方程:
a0+a1x+a2x^2+..+anx^n=0
求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)
输入输出格式
输入格式:
输入文件名为equation .in。
输入共n + 2 行。
第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。
接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an
输出格式:
输出文件名为equation .out 。
第一行输出方程在[1, m ] 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。
输入输出样例
输入样例#1:
2 10
1
-2
1
输出样例#1:
1
1
输入样例#2:
2 10
2
-3
1
输出样例#2:
2
1
2
输入样例#3:
2 10
1
3
2
输出样例#3:
0
说明
30%:0
50%:0
70%:0
100%:0
分析:
一看想是用高精度做,可能还会超时,就没仔细做,打的暴力枚举,50分
正解:其实不是高精度……
对于很大的数,我们可以给它取模,因为等式两边取模仍然成立。但是枚举x来判断的话会超时,所以这里用到一个技巧:如果一个数x对于这个等式成立的话,那么x+mod(模的那个数)也会成立。
需要注意的是,只用一个数模可能会不对,所以多用几个检验一下。
代码:
#include#include#include
#define M 110
#define N 1000010
#define ll long long
using namespacestd;chars[N];intn,m;
ll a[3][M],p[3]={0,10007,1000001397};boolok[N];bool check(int x,intnum)
{
ll ans=0,w=1;for(int i=0;i<=n;i++)
{
ans=(ans+a[num][i]*w%p[num])%p[num];
w=(w*x)%p[num];
}if(!(ans%p[num]))return true;return false;
}intmain()
{
freopen("jh.in","r",stdin);
scanf("%d%d",&n,&m);for(int i=0;i<=n;i++)
{
scanf("%s",s);int l=strlen(s);bool flag=false;for(int j=1;j<=2;j++)
{int x=0;if(s[0]=='-'){flag=true;x=1;}for(int k=x;k
a[j][i]=(a[j][i]*10%p[j]+(ll)s[k]-'0')%p[j];if(flag)a[j][i]=p[j]-a[j][i];
}
}for(int i=1;i<=p[1];i++)if(check(i,1))
{for(int j=i;j<=m;j+=p[1])if(check(j,2))
ok[j]=true;
}int tot=0;for(int i=1;i<=m;i++)if(ok[i])tot++;
printf("%d\n",tot);for(int i=1;i<=m;i++)if(ok[i])printf("%d\n",i);return 0;
}
View Code