Mysql解方程_解方程(codevs 3732)

题目描述

已知多项式方程:

a0+a1x+a2x^2+..+anx^n=0

求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)

输入输出格式

输入格式:

输入文件名为equation .in。

输入共n + 2 行。

第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。

接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an

输出格式:

输出文件名为equation .out 。

第一行输出方程在[1, m ] 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。

输入输出样例

输入样例#1:

2 10

1

-2

1

输出样例#1:

1

1

输入样例#2:

2 10

2

-3

1

输出样例#2:

2

1

2

输入样例#3:

2 10

1

3

2

输出样例#3:

0

说明

30%:0

50%:0

70%:0

100%:0

8f900a89c6347c561fdf2122f13be562.png

961ddebeb323a10fe0623af514929fc1.png

分析:

一看想是用高精度做,可能还会超时,就没仔细做,打的暴力枚举,50分

正解:其实不是高精度……

对于很大的数,我们可以给它取模,因为等式两边取模仍然成立。但是枚举x来判断的话会超时,所以这里用到一个技巧:如果一个数x对于这个等式成立的话,那么x+mod(模的那个数)也会成立。

需要注意的是,只用一个数模可能会不对,所以多用几个检验一下。

代码:

#include#include#include

#define M 110

#define N 1000010

#define ll long long

using namespacestd;chars[N];intn,m;

ll a[3][M],p[3]={0,10007,1000001397};boolok[N];bool check(int x,intnum)

{

ll ans=0,w=1;for(int i=0;i<=n;i++)

{

ans=(ans+a[num][i]*w%p[num])%p[num];

w=(w*x)%p[num];

}if(!(ans%p[num]))return true;return false;

}intmain()

{

freopen("jh.in","r",stdin);

scanf("%d%d",&n,&m);for(int i=0;i<=n;i++)

{

scanf("%s",s);int l=strlen(s);bool flag=false;for(int j=1;j<=2;j++)

{int x=0;if(s[0]=='-'){flag=true;x=1;}for(int k=x;k

a[j][i]=(a[j][i]*10%p[j]+(ll)s[k]-'0')%p[j];if(flag)a[j][i]=p[j]-a[j][i];

}

}for(int i=1;i<=p[1];i++)if(check(i,1))

{for(int j=i;j<=m;j+=p[1])if(check(j,2))

ok[j]=true;

}int tot=0;for(int i=1;i<=m;i++)if(ok[i])tot++;

printf("%d\n",tot);for(int i=1;i<=m;i++)if(ok[i])printf("%d\n",i);return 0;

}

View Code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值