【应用数学】动态最优化(6):确定性最优控制

这篇博客详细介绍了确定性最优控制理论,涵盖自由端点问题、固定边界问题、各种终点受约束情形、含代数约束的控制问题,并通过哈密顿方程和最优性条件进行解析,适合应用数学和动态最优化研究者阅读。
摘要由CSDN通过智能技术生成

200731本篇是应用数学之动态最优化理论的笔记,欢迎各位交流!今天是第六部分:确定性最优控制。

6. 确定性最优控制

  • 定义哈密顿方程
    H ( t , x , u , λ ) = f ( t , x , u ) + λ g ( t , x , u ) H(t, x, u, \lambda)=f(t, x, u)+\lambda g(t, x, u) H(t,x,u,λ)=f(t,x,u)+λg(t,x,u)

6.1 自由端点问题

  • 最优控制问题为
    max ⁡ ∫ t 0 t 1 f ( t , x ( t ) , u ( t ) ) d t  s.t.  x ˙ ( t ) = g ( t , x ( t ) , u ( t ) ) x ( t 0 ) = x 0 \begin{aligned} \max \quad &\int_{t_{0}}^{t_{1}} f(t, x(t), u(t)) \mathrm{d} t\\ \text { s.t. } \quad &\dot{x}(t)=g(t, x(t), u(t))\\ \quad &x\left(t_{0}\right)=x_{0} \end{aligned} max s.t. t0t1f(t,x(t),u(t))dtx˙(t)=g(t,x(t),u(t))x(t0)=x0

其中 u ( t ) u(t) u(t)控制变量 x ( t ) x(t) x(t)状态变量。最优化条件需要满足最优性条件(a)、欧拉方程(b)、可行性条件(c)、横截条件(d)和二阶条件(e),分别为
a . H u ( t , x , u , λ ) = f u ( t , x , u ) + λ g u ( t , x , u ) = 0 b . d λ d t = − H x ( t , x , u , λ ) = − f x ( t , x , u ) − λ g x ( t , x , u ) c . d x d t = H λ ( t , x , u , λ ) = g ( t , x , u ) , x ( t 0 ) = x 0 d . λ ( t 1 ) = 0 e . H u u ( t , x , u , λ ) ⩽ 0 ( 最 大 化 问 题 ) H u u ( t , x , u , λ ) ⩾ 0 ( 最 小 化 问 题 ) \begin{array}{l} a. &H_{u}(t, x, u, \lambda)=f_{u}(t, x, u)+\lambda g_{u}(t, x, u)=0\\ b. &\frac{\mathrm{d} \lambda}{\mathrm{d} t}=-H_{x}(t, x, u, \lambda)=-f_{x}(t, x, u)-\lambda g_{x}(t, x, u)\\ c. &\frac{\mathrm{d} x}{\mathrm{d} t}=H_{\lambda}(t, x, u, \lambda)=g(t, x, u), x\left(t_{0}\right)=x_{0}\\ d. &\lambda\left(t_{1}\right)=0\\ e.&H_{u u}(t, x, u, \lambda) \leqslant 0 \quad (最大化问题)\\ &H_{u u}(t, x, u, \lambda) \geqslant 0 \quad (最小化问题) \end{array} a.b.c.d.e.Hu(t,x,u,λ)=fu(t,x,u)+λgu(t,x,u)=0dtdλ=Hx(t,x,u,λ)=fx(t,x,u)λgx(t,x,u)dtdx=Hλ(t,x,u,λ)=g(t,x,u),x(t0)=x0λ(t1)=0Huu(t,x,u,λ)0Huu(t,x,u,λ)0

  • 若目标函数变为
    ∫ t 0 t 1 f ( t , x ( t ) , u ( t ) ) d t + φ ( x ( t 1 ) ) \int_{t_{0}}^{t_{1}} f(t, x(t), u(t)) \mathrm{d} t+\varphi\left(x\left(t_{1}\right)\right) t0t1f(t,x(t),u(t))dt+φ(x(t1))

  • 只需将横截条件变为
    λ ( t 1 ) = φ ′ ( x 1 ) \lambda\left(t_{1}\right)=\varphi^{\prime}\left(x_{1}\right) λ(t1)=φ(x1)

  • 若带贴现
    ∫ t 0 t 1 e − r t f ( t , x ( t ) , u ( t ) ) d t + φ ( x ( t 1 ) ) \int_{t_{0}}^{t_{1}} e^{-r t} f(t, x(t), u(t)) \mathrm{d} t+\varphi\left(x\left(t_{1}\right)\right) t0t1ertf(t,x(t),u(t))dt+φ(x(t1))

  • 则哈密顿方程变为
    H ( t , x , u , λ ) = e − r t [ f ( t , x , u ) + μ g ( t , x , u ) ] = e − r t H ~ , μ = e r t λ H(t, x, u, \lambda)=e^{-r t}[f(t, x, u)+\mu g(t, x, u)]=e^{-r t} \tilde{H} \quad, \mu=e^{r t} \lambda H(t,x,u,λ)=ert[f(t,x,u)+μg(t,x,u)]=ertH~,μ=ertλ

  • 称为现值哈密顿方程

  • 最优性条件和欧拉方程分别为
    H ~ u = 0 μ ˙ = r μ − H ~ x \begin{array}{l} \tilde{H}_{u}=0 \\ \dot{\mu}=r \mu-\tilde{H}_{x} \end{array}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值