cataog
给定你一些 圆角矩阵, 其每一个角 都是一个 半径为radius的圆的 1/4 圆弧

每个矩形 中心即对角线中心 坐标是{x, y},
然后会有一个角度angle, 表示: 该矩阵 需要以该矩阵的中心(x,y) 旋转angle角度
每一个矩阵都相同, 只是位置 和 旋转角度 不同.
问: 将这些矩阵 围起来的 凸包周长.

首先, 如果说 r == 0 即这些都是 直角矩阵, 你将每个矩阵的4个端点, 即一共4 * n个端点, 进行一次凸包算法, 就便是答案.
看圆角矩阵时, 这个凸包 有哪些性质.

这个凸包, 肯定是由: (直边) 和 (圆弧 <= 90度) 组成.

- 1, 将这个圆弧, 从端点处 延长, 即蓝色线, 他们会相交于某一点.
- 2, 此时, 你延长后, 圆心到 圆弧两个端点的垂线, 和 两个延长线, 组成的 四边形;
根据圆的切线定理, 可以得到: 圆弧角度 = 蓝色延长角的外角
用所有的蓝色延长线, 替代 所有的 圆弧, 你就会 将这个凸包 变成一个 多边形.
任意多边形的 外角和 = 360度, 故, 可知: 所有圆弧的角度 = 360;
凸包中, 所有的圆弧 恰好构成 一整个圆
然后, 处理 凸包中 所

本文探讨了如何处理圆角矩阵的凸包问题,指出凸包由直边和圆弧组成,并利用圆的性质简化问题。通过延长圆弧并替换为直线,将凸包转换为多边形,利用外角和为360度的性质求解圆弧总角度。同时介绍了矩阵绕一点旋转的坐标变换公式,详细阐述了旋转过程。
最低0.47元/天 解锁文章
386

被折叠的 条评论
为什么被折叠?



