论文:Learning to Segment everything阅读笔记

Learning to Segment everything

目录

Learning to Segment everything

1 概述

2 分割一切

3 实验

4 大规模实例分割


1 概述

实例分割(instance segmentation)是对每一个检测到的目标产生一个前景分割掩膜。目前,实例分割所能处理的类别只有100种左右,这只是实际视觉世界中的冰山一角。其主要原因是,先进的实例分割算法需要在强监督的条件下进行,而收集新的类别需要花费很多的功夫。相反地,对边框进行标注却并不需要花费很多的功夫。那么问题来了,我们是否可以不进行完整的实例分割标注,来进行最先进实例分割系统的训练呢?在本篇论文中,我们介绍了一种新的半监督实例分割任务,并且采用了一种新奇的迁移学习方法来解决这个问题。

我们半监督实例分割的描述如下:1)给出一个子数据集,其中即包含具有实例掩膜标注的样本,又包含仅有边框标注的样本。2)实例分割算法可以利用这些数据来分割任何类别的目标。由于训练集数据中既包含强标注的Masks,又包含弱标注的boxes,所以我们把这个任务称为半监督。

Visual Genome数据集中包含了很多类别的边框标记,COCO数据集中包含了很少量类别的掩膜标记。结合这两者,使用半监督vs弱监督进行训练,我们就可以构建一个更大规模的实例分割模型。这使得我们可以改造现有的最先进实例分割方法,来对成千上万种类别进行分割,而这种能力对现实世界中的应用来说是非常重要的。

我们基于Mask R-CNN提出了一种新奇的迁移学习来实现半监督实例分割。而Mask R-CNN把实例分割分为目标检测和掩膜预测两个子任务来处理,所以它刚好适合于实现我们的任务。这些子任务通过联合训练的heads网络来处理。这个想法背后的含义为:边框head的参数在经过训练之后,会对嵌入目标类别进行编码,然后对这些信息进行迁移,用于掩膜head的半监督学习。

我们通过设计一个权重转移函数来实现这个想法,函数的输入为边框检测参数,输出为某个种类的实例分割参数。这个权重函数可以使用掩膜标注进行端到端的训练。在推理的时候,权重函数预测每一个种类的实例分割参数,使得模型可以分割所有的目标类别,就算这些掩膜类别没有出现在训练过程中。

                                                                                图1-1 分割结果示意图

我们的方法分为两个过程

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值