第一章:素理想与局部化

研究背景

在以下内容中,所有环都是具有单位元素1的交换环。一个环A的理想p被称为素的,如果A/p是一个域,即可以嵌入到一个域中;这样的理想不同于A。一个环A被称为半局部的,如果它的极大理想的集合是有限的。它被称为局部的,如果它只有一个极大理想m;则有A - m = A*,其中A*表示A中的可逆元素的乘法群。

研究主旨

该章节深入探讨了交换代数中的素理想、局部化、诺特环和模等概念,以及它们之间的关系。通过Nakayama引理和各种命题,作者展示了如何在这些结构中进行推理,特别是在局部环和模的背景下。此外,还讨论了素理想的关联性和主理想的性质。

研究特点

本章总结了交换代数中的标准结果。更多细节,请参阅[Bour]第二、三、四章。

文章出处 第一章:素理想与局部化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值