研究背景
在以下内容中,所有环都是具有单位元素1的交换环。一个环A的理想p被称为素的,如果A/p是一个域,即可以嵌入到一个域中;这样的理想不同于A。一个环A被称为半局部的,如果它的极大理想的集合是有限的。它被称为局部的,如果它只有一个极大理想m;则有A - m = A*,其中A*表示A中的可逆元素的乘法群。
研究主旨
该章节深入探讨了交换代数中的素理想、局部化、诺特环和模等概念,以及它们之间的关系。通过Nakayama引理和各种命题,作者展示了如何在这些结构中进行推理,特别是在局部环和模的背景下。此外,还讨论了素理想的关联性和主理想的性质。
研究特点
本章总结了交换代数中的标准结果。更多细节,请参阅[Bour]第二、三、四章。