黎曼传记资料(2010-04-22 22:17:06)



黎曼的数学成就:
一、实、复分析
1.1三角级数
1.2黎曼积分
1854年,黎曼定义了有界函数的积分。
黎曼积分的定义:设M为空间R^n(n<=3)中可度量的几何形体,f(X)是定义在M上的有界函数,将M任意分割为m个可度量的小几何形体M_i(i=1,2,…,m),它们的度量值记为△M_i。记d=max[1<=i<=m]{△M_i}。¥X_i∈M_i(i=1,2,…,m),作和式∑[1<=i<=m]f(X_i)△M_i,称此和式为函数f(X)在M上的黎曼和。若极限I=lim[d->0]∑[1<=i<=m]f(X_i)△M_i存在,且与对M的分割方式及点X_i的选择方式无关,则称此极限值I为函数f(X)在M上的黎曼积分,记为I=∫_Mf(X)dM=lim[d->0]∑[1<=i<=m]f(X_i)△M_i,此时称函数在M上是黎曼可积的,记为f(X)∈R(M)。其中,∫是积分号,f(X)是被积函数,M是积分区域,dM是积分元素。
1.3在偏微分方程中他给出了解波动方程的一个重要方法
黎曼-许瓦兹定理
黎曼关于条件收敛级数的定理,通过重排可以得到任何数
二、解析数论
2.1黎曼ζ函数的研究
三、局部微分几何
3.1(拓扑)流形、微分流形、黎曼流形
3.2黎曼度量、黎曼曲率张量
在2维情况下有3个独立的度规函数,剩下1个函数真正表达着空间的内在性质。对于D=2,C=1,M=3这是Gauss所发现的。对于D>2,C>1的情况,几何的描述变得非常复杂。
在D维情况下有M=D(D+1)/2个独立的度规函数。我们可以随意选择D个坐标,从而把D个任意函数关系约束在度规上。剩下C=D(D-1)/2个函数真正表达着空间的内在性质。
在3维情况下有6个独立的度规函数,剩下3个函数真正表达着空间的内在性质。
3.3非欧几何----曲率为0与非0是区别欧氏几何与非欧几何的特征之一
1854年,黎曼(德,1826-1866)《关于几何基础的假设》
常曲率空间=正常曲率(黎曼几何,二重椭圆几何)+负常曲率(罗氏几何、非欧几何,双曲几何)+零曲率(欧氏几何,抛物几何)
四、复几何
4.1黎曼曲面(一维复流形)
1851年,(德)黎曼(G.F.B.Riemann,1826.9.7-1866.7.20)引入了黎曼面概念、保形映射理论,确立了复变函数的几何理论基础。
1857年,黎曼详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数。
1882年,(德)克莱因(C.F.Klein,1849.4.25-1925.6.22)的“代数函数及其积分的黎曼理论”发表,对黎曼面理论做了深刻阐述。
1913年,(德)外尔(C.H.H.Weyl,1885.11.9-1955.12.8)论“黎曼曲面的概念”发表,给黎曼曲面奠定了严格的拓扑基础,引入了复流形的概念。
外尔首先给出黎曼曲面的近代定义。与此同时,他也给出了“流形“这个近代数学的基本概念的严格定义。按照外尔的观点,黎曼曲面就是一维的复流形。----互为反函数的黎曼曲面是一样的吗??
黎曼曲面的引入大大地开扩了复变函数论的研究范围。
黎曼曲面:
黎曼为了给多值解析函数设想一个单值的定义域而提出的一种曲面。用现代的语言说,黎曼曲面就是连通的一维复流形。单值解析函数的反函数可以是多值的[应该说一般是多值的]。另外,从一个解析函数元素出发沿一个闭曲线作解析开拓,最后可能得到不同的元素。因此,完全解析函数往往是多值的。在研究多值函数时,人们先把它分解为一个个单值解析分支,然后按这些分支之间的关系把它们连接起来。
把z^(1/n)的黎曼曲面按原来的位置放在扩充的复平面上就成了扩充复平面的一个n叶覆盖曲面。曲面上的点0和∞叫做n-1级枝点。
Lnz的黎曼曲面是(除去原点后的)复平面的无枝点的覆盖曲面。
----w=z^n是n-1的,w=e^z是1-1的
一般地说,复平面(或扩充的复平面)的任意一个覆盖曲面都可以看作一个黎曼曲面。设覆盖曲面中的点P位于复平面中的点z上,则称z为P的投影。定义在曲面上的一个函数在非枝点处是否解析,就看它作为投影z的函数是否是解析的;而在投影为z_0的n-1级枝点处,则要看它对于ζ=(z-z_0)^(1/n)是否是解析的。这就是黎曼本人的原始的黎曼曲面的概念。黎曼曲面的经典理论是在这样的概念上发展起来的。
一个完全解析函数或完全解析构形,把其中以z_0为中心的函数元素看作放在z_0上的点,自然就成了扩充平面的覆盖曲面,这就是它的黎曼曲面。一个代数函数w=w(z)的黎曼曲面是扩充平面的n叶覆盖曲面(n为对应的方程中w的最高次数)。
没有枝点的覆盖曲面叫做光滑覆盖曲面。
五、代数几何
关于阿贝尔函数,黎曼发表过两篇文章:一是“阿贝尔函数论”,一是“论函数的零点”,这是前一篇的续篇,前一篇由四部分构成,是他生前发表最深刻的、有丰富内容的著作。
阿贝尔积分及阿贝尔函数是椭圆积分、超椭圆积分以及椭圆函数、超椭圆函数的推广,所谓阿贝尔积分是指形如∫R(W,Z)dZ的积分,其中R(W,Z)表示W,Z的有理函数,同时W,Z满足代数方程f(W,Z)=0。虽然椭圆积分及超椭圆情形已经得到很好的处理,但是一般情形是当时数学家能力的试金石。----也是复分析和代数几何的核心内容。
正因为如此,黎曼和魏尔斯特拉斯才由于他们研究阿贝尔函数的卓越成果而取得他们在数学界的卓越地位。黎曼正是因为有了黎曼曲面这个工具,才能得心应手解决这方面的问题。
1.阿贝尔积分的表示及分类
黎曼对由f(Z,W)=0定义的黎曼曲面上所有阿贝尔积分进行了分类。
第一类阿贝尔积分,在黎曼曲面上处处有界、线性独立的第一类阿贝尔积分的数目等于曲面的亏格p,如果曲面的连通数N=2p+1,这p个阿贝尔积分称为基本积分。
第二类阿贝尔积分,在黎曼曲面上以有限多点为极点。
第三类阿贝尔积分,在黎曼曲面上具有对数奇点。
每一个阿贝尔积分均为以上三类积分的和。
----勒让德对椭圆积分的分类,黎曼对阿贝尔积分的分类
黎曼还引进相伴曲面观念。设黎曼曲面由F(S,Z)=0定义,F对S是n阶,对Z是m阶,则相伴曲面由Q(S,Z)=0定义,Q对S是n-2阶,对Z是m-2阶,这时第一类阿贝尔积分可表为∫Q(S,Z)dZ/(δF/δS)。
黎曼曲面上的有理函数也可借助相伴曲面来表示。
2.黎曼-罗赫定理(Riemann-Roch theorem)
这是代数函数论(1857,黎曼)及代数几何学中最重要的定理。黎曼得到的黎曼不等式,是黎曼-罗赫定理的原始形态,黎曼研究的出发点之一是黎曼曲面上指定单极点的亚纯函数的数目,他证明以μ个给定一般点为极点的单值函数形成L=μ-p+1维线性簇,但对于特殊一组m个点,维数L还要增加,因此黎曼得出黎曼不等式L>=μ-p+1。
黎曼的学生古斯塔·罗赫(G.Roch)补充一项使之成为等式,此即代数函数论({<}复分析)和代数几何学({<}复几何)中心定理。把黎曼-罗赫定理推广到代数曲面、高维代数簇、一般代数簇(1954,希策布鲁赫)极为困难。阿蒂亚-辛格指标定理也是它的推广。
3.黎曼矩阵、黎曼点集与阿贝尔函数
每亏格为p的黎曼曲面X上所有一阶全纯形式有一基,ω_1,…, ω_p,X上有2p条互不同伦的闭曲线(同调基)r_1,…,r_2p,造2j[应该是2p吧]个复p维向量π_j=(∫_(r_j)ω_1) …,∫_(r_j)ω_p)∈C^p,j=1,…,2p。
它们在实数域上线性独立,在C^p中生成格Λ,则C^p/Λ是复环面为X的雅可比簇,黎曼通过适当选取(ω_1,…, ω_p)及(r_1,…,r_2p)使2p*p矩阵∏={∏_1,∏_2g}具有{I,B}的形式。
其中I为p*p单位矩阵,B为复对称矩阵,其虚部为正定。这种矩阵∏或B称为黎曼矩阵,它满足黎曼等式及黎曼不等式,称为黎曼周期关系。
黎曼认识到周期关系式非退化阿贝尔函数存在的充分且必要条件,但他既没有表达完全,也没有提供证明。魏尔斯特拉斯尽管花了很大力气,仍未能得出一个完全证明。最后,庞加莱完成了证明(1902)。
4.θ函数及雅可比反演问题
为了研究雅可比簇,黎曼推广雅可比θ函数,引进黎曼θ函数,其定义为g个复变量z_1,…,z_p的函数
θ(z)= θ(z_1,…,z_p;B)=。
其中B=(b_αβ),α,β=1,…,p。
显然,θ(z)的零点对格子间的平移保持不变。θ(z)的零点集J(x)内的象Θ称为θ除子。
有了θ函数,黎曼定义阿贝尔-雅可比映射A:X->J(X)。
它把x∈X映到(∫[x_0,x]ω_1,…, ∫[x_0,x]ω_p),其中x_0∈X是选定基点。他证明了下面两个定理:
(1)阿贝尔定理:在黎曼曲面X上指定两组点集(x_1,…,x_k),(y_1,…,y_k),x_i≠y_j,i,j=1,…k,则在X上存在一个亚纯函数以(x_1,…,x_k)为零点,以(y_1,…,y_k)为极点的充分必要条件是∑[i=1->k]A(x_i)= ∑[i=1->k]A(y_i)。
阿贝尔原来的定理是关于代数微分的积分的加法定理,黎曼首

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
代数拓扑与同调论 Algebraic Topology ........................................................................................... Allen Hatcher Title Page Table of Contents Preface Standard Notations 同调论 .......................................................................................................................................... 姜伯驹 同调论讲义 ............................................................................................................................... 段海豹 Homological Algebra ................................................... HENRI CARTAN & S.EILENBERG Title Page Preface Contents List of Symbols 代数拓扑讲义 .......................................................................................... 根据Munkers 的书整理 代数拓扑的现代方法...................................................................................... HENRI CARTAN Conceptual Mathematics - A First Introduction to Categories ............................................................................................ F.William Lawvere Stephen H.Schanuel Basic Category Theory ............................................................................. Jaap van Oosten 范畴论 .............................................................................................................................................. 贺伟 谱序列 ...................................................................................................................................... 维基百科 Spectral sequence ...................................................................................................... Wikipedia Floer homology ............................................................................................................ Wikipedia Spectral Sequences in Algebraic Topology ................................ Allen Hatcher
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值