Python深度学习 3:机器学习基础

监督学习:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

验证集的引入:

在这里插入图片描述

绍三种经典的评估方法:简单的留出验证、K 折验证, 以及带有打乱数据的重复 K 折验证。

在这里插入图片描述

神经网络输入数据的预处理。向量化、标准化、处理缺失 值和特征提取:

向量化:

在这里插入图片描述

值标准化:

在这里插入图片描述

处理缺失值:

在这里插入图片描述

过拟合和欠拟合:

在这里插入图片描述

正则化竟然理解错了:不是对最后的loss(w)求梯度之类的过程,而仅仅是一个简单的计算然后加到原来的损失函数上。

在这里插入图片描述

防止过拟合时可以:减小网络大小。

在这里插入图片描述
在这里插入图片描述

读懂验证损失这个图:

在这里插入图片描述

验证损失越小说明模型越小。

随着epoch的增加,验证损失首先减小,然后增加,增加说明开始过拟合。

添加权重正则化:

在这里插入图片描述
在这里插入图片描述

dorpout正则化,有趣的小故事:

在这里插入图片描述
在这里插入图片描述

评估的方法:

在这里插入图片描述

准备数据:

在这里插入图片描述

常见问题最后一层的激活和损失函数:

在这里插入图片描述

.。。

在这里插入图片描述

。。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值