循环斐波那契数列_神秘的斐波那契数列:自然界的黄金分割

自然界的黄金分割----斐波那契数列

8d03d0a8c154f3c72a6220332714e64d.png
60b0cbb72ff1a16be2a6ea7803d38389.png
d5f98a4ea9bb4fac8dee1419a5e267f4.png
4389cc6ba906ac50b891a1e170cf7053.png
9dde85964a85406d09e5109f5acd8cfc.png
fc4d6e2e3988037cf76e39fd3061877c.png
9bf920e2f2bb9cdd88d597db64a719cf.png

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1,1,2,3,5,8,13,21,34,55, 89, 144, 233,377,610,987,1597,2584,4181……这个数列从第3项开始,每一项都等于前两项之和。

在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>1,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

a8f61ed9a82ebdc861ebd549a9c4b50a.png

(斐波那契弧线)

e0e106199c10765ae833e000cfb4c0a3.png

(斐波那契画像)

一、通项公式

斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,……

如果设F(n)为该数列的第n项(n∈N*),那么该数列的递推关系式:F(n)=F(n-1)+F(n-2),显然这是一个线性递推数列。通项公式:

078f4969f089894a8ae2cac72606c0ee.png

与黄金分割关系:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,……。一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近0.618)。

例如1÷1=1, 1÷2=0.5, 2÷3=0.666, 3÷5=0.6, 5÷8=0.625,……,

55÷89=0.617977,……, 144÷233=0.61802575,……,

46368÷75025=0.61803399,……,越到后面这些比值越接近黄金比。

f1d3753553288904b4c36d8ebe840edd.png

名画中的黄金分割

三、斐波那契数列的推广

(1)斐波那契—卢卡斯数列

卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。我们可称之为斐波那契—卢卡斯递推:从第3项开始,每一项都等于前两项之和

8ba624aba1d8b604805036232623f24c.png

卢卡斯数列的通项公式为:

9f4d9eab242d94d0dcc5bd5658936820.png

斐波那契—卢卡斯数列之间的广泛联系:①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得。类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。这两个数列有一种特殊的联系:F(n)·L(n)=F(2n)及L(n)=F(n-1)+F(n+1)

如数列1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。

斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值。

斐波那契数列:|1×1-1×2|=|2×2-1×3|=|3×3-2×5|=|5×5-3×8|=…=1

卢卡斯数列:|3×3-1×4|=|4×4-3×7|=…=5

F[1,4]数列:|4×4-1×5|=11

F[2,5]数列:|5×5-2×7|=11

F[2,7]数列:|7×7-2×9|=31

斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。卢卡斯数列的黄金特征是5,也是独生数列。前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。F[2,7]也有孪生数列:F[3,8]。其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。

(2)广义斐波那契数列

斐波那契数列的黄金特征1,还让我们联想到佩尔数列:1,2,5,12,

29,…,也有|2×2-1×5|=|5×5-2×12|=…=1(该类数列的这种特征值称为勾股特征)。佩尔数列Pn的递推规则:P1=1,P2=2,Pn=Pn-2+2Pn-1。据此类推,所有根据前两项导出第三项的通用规则:f(n) = f(n-1)p + f(n-2)q,称为广义斐波那契数列。

当p=1,q=1时,我们得到斐波那契—卢卡斯数列。

当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。

当p=2,q=-1时,我们得到等差数列。其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。自然数列的特征就是每个数的平方与前后两数之积的差为1。当f1=1,f2=2,p=2,q=0时,我们得到等比数列1,2,4,8,16…。具有类似黄金特征、勾股特征、自然特征的广义——斐波那契数列p=±1。

四、自然界中“巧合”

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。

634bd2c69dd8da7fea5bc41087615e4e.png

(自然中的斐波那契数列)

3644492f6fef907dc888d9274eccbe11.png

(向日葵花瓣)

斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。(如下图)

4a1a71b39a0b18b5c43f6fd99365de34.png

斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序比(“叶序”希腊词,意即叶子的排列)。多数的叶序比呈现为斐波那契数的比。

另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……其中,百合花为3瓣,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。

这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.61803398…的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1992年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以斐波那契数列长出花瓣。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值