稳定判据_奈奎斯特稳定判据的简明通俗理解和应用

本文深入浅出地介绍了奈奎斯特稳定判据,通过幅角原理探讨了系统稳定性的判断。文章详细阐述了复变函数F(s)的构造,以及如何利用开环传函的幅相曲线确定系统的稳定性。此外,还讨论了奈奎斯特判据在频域分析中的应用及其与根轨迹、波德图的关系,强调了频域分析在动态性能设计中的优势。
摘要由CSDN通过智能技术生成

又到了大学春季学期,自控原理如期而至;还记得一年前我在学自控的时候,得到一位恩师的指导和解惑,问了老师太多自控原理的问题还去蹭现代控制理论,恩师都耐心解答,先在这里感谢恩师对我自控原理的指导和大学学习的“启蒙“。今天学直流电机运动控制的时候,回过头又翻看奈氏判据(幅相曲线和波德图判稳),再次感叹奈奎斯特判据的优美巧妙,并写下一些理解心得(没有很详细的每一步,只有难点的分析,故建议学到频域分析的时候再看帮助理解),希望对后面的同学有所帮助。

一、幅角原理

由自控原理教材(胡寿松版),奈奎斯特判稳的第一节是判据的数学基础——幅角原理;讲的是:复平面的一个复变函数F (s)=(s-z1)*(s-z2)/(s-p1)*(s-p2)(可以是任意的复变函数,这里用它方便讨论) ,然后它的自变量s进行顺时针运动,顺时针运动的轨迹是一个闭合轨迹(可以是圆或者任何闭合曲线)Γ曲线,且s运动的时候不能经过他的零极点(z1,z2和p1,p2),这个闭合轨迹包围的零极点个数P、Z和F(s) 绕坐标原点的圈数R有关,具体关系如下:R=P-Z。很抽象,请看下面的通俗分析:

首先,任意一点s,它的F(s)的相角为 ∠F(S)=∠(s-z1) +∠(s-z2) -∠(s-p1) -∠(s-p2),注意,∠F(S)对应的角度是对原点的夹角且我们这里不考虑长度(幅值ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值