《立体视觉–stereo correspondence(双目立体匹配)》中提到双目立体匹配中主要可以分为基于灰度的匹配算法和基于特征匹配算法,一般基于灰度匹配为建立每个点对应的匹配关系,并计算出每个点的视差,一般称之为密集匹配,而特征匹配算法一般都是先构建出稀疏匹配然后通过插值构建出整个视差结果
针对密集型匹配一般处理过程主要分为以下几个部分,具有可以参照SGM算法进行理解
- 计算匹配代码,分别即根据左右图像中的灰度,梯度以及其他信息,以待匹配图像作为模块(即左图或者右图为标准),按照相似度进行度量,搜索区域内(半全局为视差范围之内,全局一般为整幅图像或者整行)变量进行计算,主要缺点是对无纹理区域、反光或者呈现出有规律的纹理影响比较严重,会出现误匹配问题
- 匹配代价聚合,对匹配点领域内所有匹配代价求和,但是该步骤计算量比较大, SGM,GraphCut等方法都分别对其进行了优化以减少计算量。
- 视差计算,根据代价聚合结果,选出最优匹配代价,一般为最小代价对应的视差值作为视差
- 优化视差结果,最视差进行优化,减少误匹配结果产生的视差,左右一致性,中值滤波等等