Jupyterlab + Ipywidgets,打造交互式分析平台

本文介绍了如何利用Ipywidgets在Jupyterlab中创建交互式控件,将数据分析从静态过程转变为动态探索。通过实例展示了如何用交互式控件控制图表、筛选数据以及实现更复杂的交互功能,提升数据科学家的工作效率。
摘要由CSDN通过智能技术生成

使用JupyterLab(Jupyter Notebook)分析数据时,一遍又一遍地重新运行同一单元格(每次稍微修改参数)的代码是非常低效的。尽管如此我还是会这么做,例如为函数选择不同的值,为分析选择不同的日期范围,甚至调整图表的主题。这不仅效率低下,而且令人沮丧,破坏了探索性数据分析的流程。

解决问题的理想方案是使用交互式控件来更改输入,而无需重新运行代码。幸运的是已经有人创造了解决问题的工具。在本文中,我们将学习如何使用Ipywidgets,使用短短几行代码来构建交互式控件。这个库能够将Jupyter Notebook从静态文档转变为交互式仪表盘(Interactive Dashboard),大幅提升数据分析的效率。

在这里插入图片描述

安装和配置ipywidgets

先用pip安装ipywidgets: pip install ipywidgets

安装完成后在Jupyter Notebook中激活:

jupyter nbextension enable --py widgetsnbextension

如果使用Jupyterlab,运行以下代码:

jupyter labextension install @jupyter-widgets/jupyterlab-manager

在Notebook中导入并使用ipywidgets:

import ipywidgets as widgets
from ipywidgets import interact, interact_manual

交互式控件入门

假设我们有一个数据框(dataframe),包含Medium文章的统计信息:

在这里插入图片描述

如何查看总阅读次数超过1000的文章?

df.loc[df['reads'] > 1000]

如果要显示点赞超过500的文章,必须编写一行新的代码:

df.loc[df['claps'] > 500]

如果不用编写更多代码就可以快速更改这些参数,那不是很好吗&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值