随机接入前导序列(random-access preambles)集 x u , v ( n ) x_{u,v}(n) xu,v(n)应根据以下公式生成:
x u , v ( n ) = x u ( ( n + C v ) m o d L RA ) \displaystyle x_{u,v}(n) = x_u((n+C_v)\mod L_{\text{RA}}) xu,v(n)=xu((n+Cv)modLRA)
其中,
x u ( i ) = e − j π u i ( i + 1 ) L RA , i = 0 , 1 , … , L RA − 1 \displaystyle x_u(i) = e^{-j \frac{\pi u i (i+1)}{L_{\text{RA}}}}, \quad i=0,1,\ldots,L_{\text{RA}}-1 xu(i)=e−jLRAπui(i+1),i=0,1,…,LRA−1
释义: x u ( i ) x_u(i) xu(i)函数的相位因子取决于索引 i i i和参数 u u u,此外关于 x u , v ( n ) 中的 C v x_{u,v}(n)中的C_v xu,v(n)中的Cv,下文中也会进行解释,其余的 u u u、 n n n、 v v v可以暂且理解为索引参数,后面会进行解释。
由此产生的频率域表示应根据以下公式生成:
y u , v ( n ) = ∑ m = 0 L RA − 1 x u , v ( m ) ⋅ e − j 2 π m n L RA y_{u,v}(n) = \sum^{L_{\text{RA}}-1}_{m=0} x_{u,v}(m) \cdot e^{-j \frac{2\pi m n}{L_{\text{RA}}}} yu,v(n)=m=0∑LRA−1xu,v(m)⋅e−jLRA2πmn
其中
L
RA
L_{\text{RA}}
LRA等于839、139、1151或571,具体取决于PRACH前导格式,如表38211-6.3.3.1-1和38211-6.3.3.1-2所示。
在每个时频资源的PRACH occasion中,定义了64个前导序列(preamble sequences),这些序列按照以下顺序进行编号:
1.首先是根据第一个增加的循环移位
C
v
C_v
Cv对逻辑根序列进行排序。
2.然后按逻辑根序列索引的递增顺序排列,从由高层参数prach-RootSequenceIndex或rootSequenceIndex-BFR或由msgA-PRACH-RootSequenceIndex(如果已配置并且启动了类型2的随机接入过程,则如[5,TS 38.213]第8.1条所述)获得的索引开始。
如果无法从单个根Zadoff-Chu序列生成所有64个前导序列,则使用具有连续逻辑索引的其他根序列,直到找到所有64个序列为止。
逻辑根序列的顺序是循环的,逻辑索引0与
L
R
A
L_{RA}
LRA-2连续。序列号
u
u
u是从逻辑根序列索引中得出的,具体方法参见38211-Tales 6.3.3.1-3到38211-6.3.3.1-4B。
下面,我们假设
L
R
A
=
839
L_{RA}=839
LRA=839
根据下面的这个公式:
x
u
(
i
)
=
e
−
j
π
u
i
(
i
+
1
)
L
RA
,
i
=
0
,
1
,
…
,
L
RA
−
1
x_u(i) = e^{-j \frac{\pi u i (i+1)}{L_{\text{RA}}}}, \quad i=0,1,\ldots,L_{\text{RA}}-1
xu(i)=e−jLRAπui(i+1),i=0,1,…,LRA−1
可以得出:
x
710
(
1
)
=
e
−
j
π
710
∗
1
∗
(
1
+
1
)
839
\displaystyle x_{710}(1) = e^{-j \frac{\pi 710 *1* (1+1)}{839}}
x710(1)=e−j839π710∗1∗(1+1)
只是上述的表格只是提供
i
i
i和
u
u
u的对应关系,对于具体的
i
i
i的取值,还是要依赖下面的这个公式:
x
u
,
v
(
n
)
=
x
u
(
(
n
+
C
v
)
m
o
d
L
RA
)
\displaystyle x_{u,v}(n) = x_u((n+C_v)\mod L_{\text{RA}})
xu,v(n)=xu((n+Cv)modLRA)
其实,这个公式中的
(
(
n
+
C
v
)
m
o
d
L
RA
)
((n+C_v)\mod L_{\text{RA}})
((n+Cv)modLRA)可以算出我们上式中用于计算的
i
i
i
我们已经解释
u
u
u的含义了,后面我们将继续研究
C
v
C_v
Cv、
n
n
n的含义: