【NR物理层研读】PRACH(一)

随机接入前导序列(random-access preambles)集 x u , v ( n ) x_{u,v}(n) xu,v(n)应根据以下公式生成:

x u , v ( n ) = x u ( ( n + C v ) m o d    L RA ) \displaystyle x_{u,v}(n) = x_u((n+C_v)\mod L_{\text{RA}}) xu,v(n)=xu((n+Cv)modLRA)

其中,

x u ( i ) = e − j π u i ( i + 1 ) L RA , i = 0 , 1 , … , L RA − 1 \displaystyle x_u(i) = e^{-j \frac{\pi u i (i+1)}{L_{\text{RA}}}}, \quad i=0,1,\ldots,L_{\text{RA}}-1 xu(i)=ejLRAπui(i+1),i=0,1,,LRA1

释义: x u ( i ) x_u(i) xu(i)函数的相位因子取决于索引 i i i和参数 u u u,此外关于 x u , v ( n ) 中的 C v x_{u,v}(n)中的C_v xu,v(n)中的Cv,下文中也会进行解释,其余的 u u u n n n v v v可以暂且理解为索引参数,后面会进行解释。

由此产生的频率域表示应根据以下公式生成:

y u , v ( n ) = ∑ m = 0 L RA − 1 x u , v ( m ) ⋅ e − j 2 π m n L RA y_{u,v}(n) = \sum^{L_{\text{RA}}-1}_{m=0} x_{u,v}(m) \cdot e^{-j \frac{2\pi m n}{L_{\text{RA}}}} yu,v(n)=m=0LRA1xu,v(m)ejLRA2πmn

其中 L RA L_{\text{RA}} LRA等于839、139、1151或571,具体取决于PRACH前导格式,如表38211-6.3.3.1-1和38211-6.3.3.1-2所示。
image
image

在每个时频资源的PRACH occasion中,定义了64个前导序列(preamble sequences),这些序列按照以下顺序进行编号:
1.首先是根据第一个增加的循环移位 C v C_v Cv对逻辑根序列进行排序。
2.然后按逻辑根序列索引的递增顺序排列,从由高层参数prach-RootSequenceIndex或rootSequenceIndex-BFR或由msgA-PRACH-RootSequenceIndex(如果已配置并且启动了类型2的随机接入过程,则如[5,TS 38.213]第8.1条所述)获得的索引开始。
如果无法从单个根Zadoff-Chu序列生成所有64个前导序列,则使用具有连续逻辑索引的其他根序列,直到找到所有64个序列为止。
逻辑根序列的顺序是循环的,逻辑索引0与 L R A L_{RA} LRA-2连续。序列号 u u u是从逻辑根序列索引中得出的,具体方法参见38211-Tales 6.3.3.1-3到38211-6.3.3.1-4B。

注意:这里的表格比较大,不予详细列出,通过这些表格可以确定逻辑根序列的序列号u,也就是在不同逻辑根序列的逻辑索引i下,可以确定u的取值。下面举一个例子:

image

在上面这张表格中,第一列代表i的取值,后面的二十列是对应第一列中i取的每一个值下,相对应的u值,比如在第一行中,i的取值为0-19,则第一行中的第二列对应的是i取值为0时,u的取值是129,第一行中的第三列,对应的是i取值为1时,u的取值是710 ...依此类推。

下面,我们假设 L R A = 839 L_{RA}=839 LRA=839
根据下面的这个公式:
x u ( i ) = e − j π u i ( i + 1 ) L RA , i = 0 , 1 , … , L RA − 1 x_u(i) = e^{-j \frac{\pi u i (i+1)}{L_{\text{RA}}}}, \quad i=0,1,\ldots,L_{\text{RA}}-1 xu(i)=ejLRAπui(i+1),i=0,1,,LRA1
可以得出:
x 710 ( 1 ) = e − j π 710 ∗ 1 ∗ ( 1 + 1 ) 839 \displaystyle x_{710}(1) = e^{-j \frac{\pi 710 *1* (1+1)}{839}} x710(1)=ej839π7101(1+1)
只是上述的表格只是提供 i i i u u u的对应关系,对于具体的 i i i的取值,还是要依赖下面的这个公式:
x u , v ( n ) = x u ( ( n + C v ) m o d    L RA ) \displaystyle x_{u,v}(n) = x_u((n+C_v)\mod L_{\text{RA}}) xu,v(n)=xu((n+Cv)modLRA)
其实,这个公式中的 ( ( n + C v ) m o d    L RA ) ((n+C_v)\mod L_{\text{RA}}) ((n+Cv)modLRA)可以算出我们上式中用于计算的 i i i
我们已经解释 u u u的含义了,后面我们将继续研究 C v C_v Cv n n n的含义:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值