cudart64_110.dll not found解决方法

  1. 在目录C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2下搜索cudart64位置

  2. 可以去网上下载一个,放进去
    https://www.dll-files.com/download/527365cb86fd76a9a7b7e9c75b4842d3/cudart64_110.dll.html?c=VTJuUXgvTENydDYzektxWENSbTZXUT09

  3. 不行就按下面的来,重装版本
    安装配置完tensorflow2.4.0发现引入包时,发生这样的错误,还有类似缺少cudart64_100.dll等问题。
    产生这样的问题,多半是版本不对应,可以看一下自己显卡驱动,然后选择正确的cuda版本,在选择对应的tensorflow版本
    安装tensorflow各个版本时,一定要参考官网上的表,最好是参考英文网站,中文网有时更新不够及时。
    在这里插入图片描述

### 解决因缺少 `cudart64_12.dll` 导致程序无法运行的问题 当遇到 `cudart64_12.dll` 缺失问题时,通常是因为 CUDA 工具包未正确安装或环境变量配置不完整所致。以下是针对此问题的具体解决方案: #### 1. 安装对应版本的 CUDA 工具包 如果程序依赖于 CUDA 12.x 版本,则需要确保已安装该版本的 CUDA 工具包。可以从 NVIDIA 的官方下载页面获取最新版 CUDA 或特定版本的工具包[^4]。 访问以下链接并下载适合操作系统的 CUDA 12.x 版本: https://developer.nvidia.com/cuda-downloads 完成下载后按照提示重新安装 CUDA 工具包,并确认其默认路径为: ```plaintext C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.x\ ``` #### 2. 检查动态库是否存在 在安装完成后,需验证 `cudart64_12.dll` 是否存在于指定路径中。对于 CUDA 12.x,默认路径应为: ```plaintext C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.x\bin ``` 或者可能位于子目录下的 `lib\x64` 文件夹中[^3]: ```plaintext C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.x\lib\x64 ``` 若上述路径不存在目标 `.dll` 文件,可手动从可信来源下载独立文件并放置到以上任意一个路径下[^1]。 #### 3. 更新系统 PATH 环境变量 为了使操作系统能够识别新增加的动态链接库 (DLL),需要将 CUDA 路径加入全局 `%PATH%` 环境变量中。具体步骤如下: - 打开 **控制面板 -> 系统和安全 -> 系统 -> 高级系统设置** - 单击 **高级** 标签页中的 **环境变量...** - 在 **系统变量** 中找到名为 `Path` 的条目,双击编辑它。 - 添加新的路径项指向 CUDA bin 和 lib 子目录,例如: ```plaintext C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.x\bin; C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.x\lib\x64; ``` 保存更改后重启计算机以应用更新后的环境变量设置。 #### 4. 测试修复效果 执行测试脚本来验证是否成功解决了 `cudart64_12.dll not found` 错误。假设当前开发框架为 Python + TensorFlow-GPU ,可以创建一个小样例来加载模型并检测硬件支持情况: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) if tf.test.is_built_with_cuda(): print("TensorFlow was built with CUDA support.") else: print("No CUDA support detected!") ``` 如果一切正常,应该可以看到可用 GPU 数量以及关于 CUDA 支持的消息输出。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值