本项目利用boston房价数据集联系简单的线性回归,若预测效果不够理想,可进一步进行非线性回归尝试。
# -*- coding: utf-8 -*-
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model
import warnings
warnings.filterwarnings('ignore')
boston=datasets.load_boston()
x=boston.data
y=boston.target
print(x.shape)
print(boston.DESCR)
'''
#练习
clf = linear_model.LinearRegression()
x=np.array([2,3,5,7,6]).reshape(-1,1)
y=np.array([6,10,14.5,21,18.5])
print(plt.scatter(x,y,color='blue'))
clf.fit(x,y) #训练模型
b,a=clf.coef_, clf.intercept_
print(b,a)
x=[[4]]
print(clf.predict(x))
print(plt.plot(x, a+b*x, color = 'red'))
'''
#波士顿房价
x=pd.DataFrame(boston.data, columns=boston.feature_names)
y=pd.DataFrame(boston.target,columns=['MEDV'])
print(plt.scatter(x['RM'],y,color='blue'))
print(plt.scatter(x['LSTAT'],y,color='blue'))
import statsmodels.api as sm
#statsmodels中线性回归模型没有截距项,下行给训练集加上一列数值为1的特征
x_add1=sm.add_constant(x)
model=

该项目运用boston房价数据集,通过多元线性回归进行预测。结果显示,调整后的R方为0.734,表明模型拟合效果一般。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



