经验分享 | 文献调研 - Connected Papers

 

「 Connected Papers 一个旨在帮助科研工作者快速搜索文献的全新工具,可以清晰的查看文献的引文信息,了解文献的引用和被引用关联。

「链接」:

https://www.connectedpapers.com


「主界面」

    Connected Papers 可以直接在搜索框根据关键词进行检索相关的文献,或者直接输入已知文献的文献名,doi,arXiv号,Semantic Scholar号,PubMed号,文章URL等进行查询。但是Connected Papers 对于中文文献的搜索比较局限,所以一般中文文献的检索还是使用「知网」数据库。

    例:输入「global climate change」关键词,然后点击「Build a graph」进行检索,搜索出该话题相关的文献,关键词要尽量精准。

    例:查找文献《Drivers and impacts of changes in China’s drylands》,可以通过下面四种方式访问文献。


    文献检索分析图谱

    检索完毕,其会构建该文献的引用图谱(最近发表的文献可能暂时无法生成),下图页面中,做栏为本文以及相关参考文献的题目,右边一栏是相关参考文献的具体内容,中间一栏为文献检索分析图谱,圆圈的大小表示引用的数量,颜色的深浅表示发表的年份,颜色越深文献越新,小球之间的线条表示引用关系,相似的文章会距离较近或中间有强的连线,将鼠标放在圆圈上右栏会西显示文献的简介以及摘要。通过这张引用图谱可以找到该文献的一些参考方法,或者是这个研究方向引用量很高的非常经典的文献或者方法,同时也非常适合做某一方向的研究综述等,对该研究方向有非常系统的了解和学习。

    Pior works 为该文章引用的文献。

    点击右上角的下载按钮,可以批量下载这些文章的引用,下载的文献引用文件可以直接在「Zotero」中打开。

    Derivative works 为引用该文章的文献。

    同时,与histcite相比,这个网站不是基于被引用的算法进行推荐,而是通过相似性进行推荐,点击文章列表的「Expend」也可以看到所推荐的文献与原文献的一个相似指数。

    阅读文献直接在「semantic page」或者「publisher page」 下载即可。

文字排版 | 南波婉琬

审核 | 南波婉琬

 

 

Introduction Gas metal arc welding (GMAW), also known as metal inert gas (MIG) welding, is a widely used industrial process that involves the transfer of metal droplets from a consumable electrode wire to a workpiece through a welding arc. In this process, the welding operator controls various welding parameters, such as welding current, voltage, wire feed speed, and electrode polarity, to achieve the desired weld bead geometry and properties. The metal transfer mechanism plays a critical role in determining the weld quality and productivity in GMAW. Therefore, there has been significant interest in developing automated methods for analyzing the metal transfer images and extracting useful information about the process. In recent years, deep learning has emerged as a powerful technique for analyzing and processing images. Convolutional neural networks (CNNs) are a type of deep learning model that can learn features from images in an end-to-end manner, without requiring explicit feature engineering. In this paper, we present a deep-learning based approach for analyzing metal transfer images in GMAW. We first discuss the dataset used in this study, followed by a detailed description of the proposed method. We then present the experimental results and discuss the implications of our findings. Dataset The metal transfer images were captured using a high-speed camera at a frame rate of 20,000 frames per second. The camera was positioned perpendicular to the welding direction and had a resolution of 1280 × 1024 pixels. The images were captured during the welding of mild steel plates using a GMAW process with a 1.2 mm diameter wire. The welding current, voltage, and wire feed speed were varied to obtain a range of metal transfer modes, including short-circuiting, globular, and spray transfer modes. The dataset consists of 10,000 metal transfer images, with each image labeled with the corresponding metal transfer mode. Proposed method The proposed method for analyzing metal transfer images in GMAW consists of the following steps: 1. Image preprocessing: The metal transfer images are preprocessed to remove any noise and artifacts. A Gaussian filter is applied to smooth the images, followed by a contrast enhancement step using histogram equalization. 2. Feature extraction: A CNN is used to extract features from the preprocessed images. The CNN architecture used in this study is based on the VGG-16 model, which has shown excellent performance in image classification tasks. The VGG-16 model consists of 13 convolutional layers and 3 fully connected layers. The output of the last convolutional layer is used as the feature vector for each image. 3. Classification: The feature vectors extracted from the metal transfer images are used to train a multiclass classification model. In this study, we used a support vector machine (SVM) classifier with a radial basis function (RBF) kernel. The SVM classifier was trained on 80% of the dataset and tested on the remaining 20%. Experimental results The proposed method was evaluated on the dataset of 10,000 metal transfer images. The classification accuracy achieved by the SVM classifier was 96.7%, indicating that the method can accurately classify the metal transfer modes in GMAW. To further validate the performance of the method, we compared it with two other classification models: a decision tree classifier and a random forest classifier. The decision tree classifier achieved an accuracy of 85.2%, while the random forest classifier achieved an accuracy of 94.5%. These results demonstrate that the proposed method outperforms these traditional machine learning models. To further analyze the performance of the method, we conducted a sensitivity analysis by varying the number of convolutional layers in the CNN. We found that the performance of the method improved with increasing number of convolutional layers, up to a certain point, after which there was no significant improvement
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值