经验分享| 文献调研 - ResearchRabbit

Research Rabbit

Research Rabbit是一个集检索、调研和管理文献为一体的全能免费科研神器。

功能

  • 可以快速高效地找到你感兴趣研究方向的大量文献,并呈现出可视化的关系网图,确保你没有错过一篇重要的论文;

  • 为你的论文创建参考文献;

  • 发现最相关的先前和衍生论文;

  • 建立文件夹,并与zotero联动,清晰明了地整理、分析、引用相关文献;

总之,便于一切与文献有关的工作:综述撰写、文献汇报、文献管理及领域热点动态等。

✦      网址      ✦

网址: www.researchrabbitapp.com

注册(注意这里的邮箱只能填机构邮箱,也就是学校的邮箱,格式如“xxx@ xx.edu.xx”)

主要界面

1.  进入网页,首先点击“New Collection”添加文件夹并命名,之后点击“+Add Papers”在文件夹中添加感兴趣的文献。

2. 添加文献后,网页右侧会显示该文献,点击文献即可查看其详细信息(作者,期刊,摘要),其中部分文献还可以直接下载原文PDF。

3. 同时我们可以看到网页右侧“Selected Papers”框有许多功能:查看Similar Work、All References、All Citations和These Authors。点击按钮即可查询(这里以All References为例)。

可以看到,这里不仅有所有参考文献的具体信息,而且还有文献检索分析图谱,既可以以网络形式展示,也可以以时间轴来展示。

4、查看领域大牛的相关工作

    在Similar Work功能中,我们可以看到一些与我们搜索文献相关的工作,并辅以显示这些文献关系网图(球越大,代表文献被引量越高,越有影响力),我们可以通过这些高被引文章,锁定领域大牛,点击“These authors”,查看每位作者的被引量、所在机构、发表的文章、发文量等。除此之外,也可以可视化该作者的文献(以网络形式显示或者按照时间线显示)。

       ✦       结语      ✦   

Research Rabbit是一个集检索、调研和管理文献为一体的全能免费科研神器。还可以与zotero联动,共同管理文献。它还有很多本文没有列出的功能有待探索,欢迎大家多多交流投稿!

END

编辑 | 南波婉歌

审核 | 南波婉歌

<think>好的,用户现在需要查找与大模型代理(Large Model Agent)相关的学术论文。首先,我需要明确用户的需求,他们可能是在进行学术研究或者项目开发,需要了解当前的研究进展和应用方向。用户提到参考了引用[1]和[2],其中引用[1]是一篇关于图与大模型结合的综述论文,而引用[2]则是一个AI Agent自动化工具。这可能意味着用户对理论研究和实际应用都有兴趣。 接下来,我需要考虑如何有效检索相关论文。常用的方法包括使用学术数据库如Google Scholar、arXiv、Semantic Scholar等,关键词组合可能需要包括“large language model agent”、“LLM-based agents”、“autonomous agents”等。同时,用户可能需要最新的综述论文来快速了解领域全貌,比如IJCAI或AAAI的会议论文。 然后,整理已有的相关研究方向。例如,引用[1]中提到图与大模型的结合,这可能与多模态代理有关,可以推荐涉及图结构数据处理的研究。另外,多智能体协作、任务自动化、评估框架等都是重要方向。用户可能还关心实际应用案例,比如AI Agent在自动化任务中的使用,如引用[2]的Bardeen.ai,因此需要推荐结合实际场景的论文。 同时,用户可能需要了解如何高效筛选论文。比如,关注高引论文、顶会文章,以及使用特定工具如ResearchRabbit来跟踪研究脉络。此外,分享一些知名研究团队的信息也能帮助用户深入追踪最新进展。 最后,生成相关问题时要覆盖用户可能感兴趣的后续方向,比如研究热点、应用挑战、评估方法、伦理问题以及多模态扩展等。这些问题需要具体且有引导性,帮助用户进一步探索。</think>以下是关于大模型代理(Large Language Model Agent)相关研究的推荐论文及检索建议: ### 一、核心研究方向及推荐论文 1. **Agent架构设计** - 《Augmented Language Models: a Survey》[^3] - 《Tool Learning with Foundation Models》[^4] $$ Agent = LLM_{core} + Memory + Tools + Env_{interface} $$ 提出模块化Agent设计范式 2. **多智能体协作** - 《ChatEval: Creating Specialized Agents through Expert Discussion》[^5] - 腾讯AI Lab《SocioTechnical Alignment for AI Agents》[^6] 3. **任务自动化** - 斯坦福《WebAgent: Planning and Web Interaction with Large Language Models》[^7] $$ P(a|G) = \prod_{t=1}^T P(a_t|s_{1:t},G) $$ 构建基于LLM的网页操作概率模型 ### 二、高效检索方法 1. 关键词组合: ```python ("large language model" OR LLM) AND (agent OR "autonomous system") AND ("task planning" OR "tool learning") ``` 2. 推荐数据库: - arXiv最新预印本(cs.AI/CL分类) - ACL Anthology - AAAI/IJCAI论文集 ### 三、重要研究机构 | 机构 | 研究方向 | 代表论文 | |------|---------|---------| | 斯坦福HAI | 社会影响 | 《The Rise and Potential of LLM Agents》[^8] | | 微软研究院 | 多模态Agent | 《Visual ChatGPT》[^9] | | DeepMind | 数学推理 | 《Solving Math Problems with LLM Agents》[^10] |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值