【论文精读】From Fidelity to Perceptual Quality A Semi-Supervised Approach for Low-Light Image Enhancement

出处

2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

论文贡献

1.首次尝试提出了一种用于微光图像增强的半监督学习框架,其中设计了一种深度递归带表示来连接全监督框架和非监督框架,以整合它们的优势——通过训练成对的数据集,获得较强的信号保真度约束以校正详细信号;通过训练高质量的图像数据集,获得较强的人类感知质量
2.该框架被设计成能够提取一系列从粗到细的波段表示。通过端到端的递归训练,这些频带表示的估计是互惠的,能够去除噪声和校正细节。
3.在质量引导的对抗性学习的感知指导下,对深带表示进行重构。基于平均意见得分(MOS)感知地选择用于鉴别器的“真实图像”。

半监督微光增强的深递归带网络

该网络的整体架构如下图所示:
在这里插入图片描述

1.递归带学习

如图所示该部分建立了一个类似UNet的深度网络,由三个卷积层和三个反卷积层构成。将网络每次输出作为网络的下次迭代的输入,由公式 ( 1 ) (1) (1)表示为:
[ f s 1 1 , f s 2 1 , f s 3 1 ] = F B L N _ F 1 ( y ) , [f_{s_1}^1,f_{s_2}^1,f_{s_3}^1]=F_{BLN\_F}^1(y), [fs11,fs21,fs31]=FBLN_F1(y),
x ^ s 1 1 = F R _ s 1 1 ( f s 1 1 ) , \hat x_{s_1}^1=F_{R\_s_1}^1(f_{s_1}^1), x^s11=FR_s11(fs11),
x ^ s 2 1 = F R _ s 2 1 ( f s 2 1 ) + F U ( x ^ s 1 1 ) , \hat x_{s_2}^1=F_{R\_s_2}^1(f_{s_2}^1)+F_U(\hat x_{s_1}^1), x^s21=FR_s21(fs21)+FU(x^s11),
x ^ s 3 1 = F R _ s 3 1 ( f s 3 1 ) + F U ( x ^ s 2 1 ) \hat x_{s_3}^1=F_{R\_s_3}^1(f_{s_3}^1)+F_U(\hat x_{s_2}^1) x^s31=FR_s31(fs31)+FU(x^s21)
其中 f s 1 1 , f s 2 1 , f s 3 1 f_{s_1}^1,f_{s_2}^1,f_{s_3}^1 fs11,fs21,fs31为每次卷积后得到的特征图像, x ^ s 1 1 , x ^ s 2 1 , x ^ s 3 1 \hat x_{s_1}^1,\hat x_{s_2}^1,\hat x_{s_3}^1 x^s11,x^s21,x^s31为每次反卷积后得到的特征图像。

在进行第 t t t次迭代时,在先前估计结果的指导下,仅学习残差特征 Δ f s 1 t , Δ f s 2 t , Δ f s 3 t \Delta f_{s_1}^t,\Delta f_{s_2}^t,\Delta f_{s_3}^t Δfs1t,Δfs2t,Δfs3t,由公式 ( 2 ) (2) (2)表示为:
[ Δ f s 1 t , Δ f s 2 t , Δ f s 3 t ] = F B L N _ F t ( y , x ^ s 3 t − 1 ) , [\Delta f_{s_1}^t,\Delta f_{s_2}^t,\Delta f_{s_3}^t]=F_{BLN\_F}^t(y,\hat x_{s_3}^{t-1}), [Δfs1t,Δfs2t,Δfs3t]=FBLN_Ft(y,x^s3t1),
f s i t = Δ f s i t + f s i t − 1 , i = 1 , 2 , 3 f_{s_i}^t=\Delta f_{s_i}^t+f_{s_i}^{t-1},i=1,2,3 fsit=Δfsit+fsit1,i=1,2,3
x ^ s 1 t = F R _ s 1 t ( f s 1 t ) , \hat x_{s_1}^t=F_{R\_s_1}^t(f_{s_1}^t), x^s1t=FR_s1t(fs1t),
x ^ s 2 t = F R _ s 2 t ( f s 2 t ) + F U ( x ^ s 1 t ) , \hat x_{s_2}^t=F_{R\_s_2}^t(f_{s_2}^t)+F_U(\hat x_{s_1}^t), x^s2t=FR_s2t(fs2t)+FU(x^s1t),
x ^ s 3 t = F R _ s 3 t ( f s 3 t ) + F U ( x ^ s 2 t ) \hat x_{s_3}^t=F_{R\_s_3}^t(f_{s_3}^t)+F_U(\hat x_{s_2}^t) x^s3t=FR_s3t(fs3t)+FU(x^s2t)
该部分训练由重建损失 L R e c t L_{Rect} LRect进行约束,其函数表达式为:
L R e c t = − ( ϕ ( x ^ s 3 T , x ) + λ 1 ϕ ( x ^ s 2 T , F D ( x , s 2 ) ) + λ 2 ϕ ( x ^ s 1 T , F D ( x , s 1 ) ) ) (3) L_{Rect}=-(\phi(\hat x_{s_3}^T,x)+\lambda_1\phi(\hat x_{s_2}^T,F_D(x,s_2))+\lambda_2\phi(\hat x_{s_1}^T,F_D(x,s_1)))\tag{3} LRect=(ϕ(x^s3T,x)+λ1ϕ(x^s2T,FD(x,s2))+λ2ϕ(x^s1T,FD(x,s1)))(3)
其中 F D F_D FD表示下采样过程, s i s_i si表示下采样过程中的缩放因子, ϕ \phi ϕ计算输入图像的SSIM值, λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2训练可得到的权重参数。

2.带重组

将第一个网络中,第 T T T次迭代相邻反卷积过程得到的残差特征 ( Δ x ^ s 1 T , Δ x ^ s 2 T , Δ x ^ s 3 T ) (\Delta\hat x_{s_1}^T,\Delta\hat x_{s_2}^T,\Delta\hat x_{s_3}^T) (Δx^s1T,Δx^s2T,Δx^s3T)作为第二个网络的输入,由公式(4)表示为:
{ ω 1 , ω 2 , ω 3 } = F R C ( { Δ x ^ s 1 T , Δ x ^ s 2 T , Δ x ^ s 3 T } ) \{\omega_1,\omega_2,\omega_3\}=F_{RC}(\{\Delta\hat x_{s_1}^T,\Delta\hat x_{s_2}^T,\Delta\hat x_{s_3}^T\}) {ω1,ω2,ω3}=FRC({Δx^s1T,Δx^s2T,Δx^s3T})
x ^ 3 F = ∑ i = 1 3 ω i Δ x ^ s i T , \hat x_3^F=\sum_{i=1}^3\omega_i\Delta\hat x_{s_i}^T, x^3F=i=13ωiΔx^siT,
Δ x ^ s i T = x ^ s i T − F U ( x ^ s i − 1 T ) , i = 2 , 3 \Delta\hat x_{s_i}^T=\hat x_{s_i}^T-F_U(\hat x_{s_{i-1}}^T),i=2,3 Δx^siT=x^siTFU(x^si1T),i=2,3
Δ x ^ s 1 T = x ^ s 1 T \Delta\hat x_{s_1}^T=\hat x_{s_1}^T Δx^s1T=x^s1T
其中输出图像 x ^ 3 F \hat x_3^F x^3F接受以下三项损失训练:
L D e t a i l = − ϕ ( x ^ 3 F − x ) (5) L_{Detail}=-\phi(\hat x_3^F-x)\tag{5} LDetail=ϕ(x^3Fx)(5)
L P e r c e p t = ∣ ∣ F P ( x ^ 3 F ) − F P ( x ) ∣ ∣ 2 2 (6) L_{Percept}=||F_P(\hat x_3^F)-F_P(x)||_2^2\tag{6} LPercept=FP(x^3F)FP(x)22(6)
L Q u a l i t y = − l o g D ( x ^ 3 F ) (7) L_{Quality}=-logD(\hat x_3^F)\tag{7} LQuality=logD(x^3F)(7)
其中 D D D是衡量 x ^ 3 F \hat x_3^F x^3F符合人眼偏好概率的鉴别器, F P F_P FP是从预先训练的VGG网络中提取深层特征的过程。
该部分网络的整体损失为:
L S B R = L P e r c e p t + λ 3 L D e t a i l + λ 4 L Q u a l i t y (9) L_{SBR}=L_{Percept}+\lambda_3 L_{Detail}+\lambda_4 L_{Quality}\tag{9} LSBR=LPercept+λ3LDetail+λ4LQuality(9)
其中 λ 3 \lambda_3 λ3 λ 4 \lambda_4 λ4为权重参数。

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值