[愚见]From Fidelity to Perceptual Quality:A Semi-Supervised Approach for Low-Light Image Enhancement

算法思想:

1)引入递归的网络架构,训练 paired 图像数据,从粗糙到精细,恢复图像细节、减少信号失真; 2)引入对抗学习,训练 unpaired 图像数据,提高图像的视觉质量,如光照、颜色分布等

 一个output展示

主要分为两个阶段,从保真度到感知质量。

1)Recursive Band Learning. 该阶段确保信号保真度和细节恢复。(保真)

2)Band  Recomposition 提高增强图像的视觉质量。(感知质量)

Context

 这里就是介绍一下x^  ,是增强图像,有多个x_{si} 组成    \Delta x_{si}是来自y的一个残差。

 这是第二个阶段的,x^增强图像的由来,其实就是w· \Delta x_{si} 的累加和,中间(y,{x1,x2,x3})这一串就是相当于w是怎么来的,是由y,和y中的{x1,x2,x3}得到。

第一阶段!!!:

 

 

 x就是ground truth,这里做一个损失函数的计算,对3个尺度都进行计算,而且Loss的计算只在最后一次迭代时。

 

 

 1/2/3st order band 应该是\Delta x_{si}的值.

在RBL阶段的基础上,进行BR阶段,也就是重组阶段。

 

 

 BR阶段利用了一个对抗性学习(类似EnlightenGAN)Global-local的一种机制,学习了AVA这个数据集,大约有25万张照片(每张都很美),然后在最后做损失函数的计算。

 

 上图是实验里的对比算法。

 DRBN感觉很不错呀。

 

 

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值