微分方程(Blanchard Differential Equations 4th)中文版Section3.2

直线解

在第 3.1 节中,我们讨论了线性系统的解,而不考虑我们是如何得到这些解的(像从帽子里变魔术一样)。我们经常使用了一个古老的方法,即“猜测与验证”。也就是说,我们先做一个猜测,然后将猜测代入方程中,检查它是否满足系统。然而,猜测与验证的方法是不够令人满意的,因为它没有提供关于这些公式最初来源的任何理解。在这一节中,我们将利用向量场的几何性质来寻找线性系统的特殊解。

直线解的几何性质

我们从重新考虑前一节的一个例子开始。线性系统

d Y d t = A Y , 其中   A = ( 2 3 0 − 4 ) , \frac{dY}{dt} = AY, \text{其中} \, A = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix}, dtdY=AY,其中A=(2034),

的方向场如图 3.7 所示。从方向场中我们可以看到,有两条特殊的直线通过原点。第一条是 x x x 轴,其上方向场中的所有向量都直接指向远离原点。另一条特殊的直线从第二个分量开始。
在这里插入图片描述图3.7 系统方向场及两条通过原点的直线
第二象限到第四象限的特殊直线。在这条线上,方向场中的向量都直接指向原点。

由于系统的解曲线始终与方向场切线,所以初始条件在正 x x x 轴上的解会向右移动,直接远离原点。而初始条件在负 x x x 轴上的解会向左移动,直接远离原点。类似地,初始条件在第二象限中的另一条特殊直线上的解会直接指向原点,而初始条件在第四象限中的这条线上的解也会直接指向原点。因此,仔细检查方向场表明,这个系统有解是位于相平面中穿过原点的直线上的。

在第 3.1 节中,我们看到

Y 1 ( t ) = ( e 2 t 0 ) 和   Y 2 ( t ) = ( − e − 4 t 2 e − 4 t ) Y_1(t) = \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix} \text{和} \, Y_2(t) = \begin{pmatrix} -e^{-4t} \\ 2e^{-4t} \end{pmatrix} Y1(t)=(e2t0)Y2(t)=(e4t2e4t)

是系统

d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY

的两个线性无关解。现在,让我们考虑这些解在相平面中的几何特性。

为了绘制 Y 1 ( t ) Y_1(t) Y1(t) 的解曲线,我们注意到 Y 1 ( t ) Y_1(t) Y1(t) x x x 坐标是 e 2 t e^{2t} e2t,而 y y y 坐标始终为 0。因此,解曲线位于正 x x x 轴上。此外, Y 1 ( t ) Y_1(t) Y1(t) t → ∞ t \to \infty t 时趋向于 ∞ \infty ,而 Y 1 ( t ) Y_1(t) Y1(t) t → − ∞ t \to -\infty t 时趋向于原点。所以 Y 1 ( t ) Y_1(t) Y1(t) 是一个沿着 x x x 轴直接远离原点的解。

对于 Y 2 ( t ) Y_2(t) Y2(t),方便的形式是:

Y 2 ( t ) = e − 4 t ( − 1 2 ) . Y_2(t) = e^{-4t} \begin{pmatrix} -1 \\ 2 \end{pmatrix}. Y2(t)=e4t(12).

这个表示告诉我们,随着 t t t 的变化, Y 2 ( t ) Y_2(t) Y2(t) 总是固定向量 ( − 1 , 2 ) (-1, 2) (1,2) 的(正的)标量倍数。由于固定向量的正标量倍数始终位于从原点发出的同一射线上,我们看到 Y 2 ( t ) Y_2(t) Y2(t) 参数化了从 ( 0 , 0 ) (0, 0) (0,0) 出发的具有斜率 − 2 -2 2 的射线(见图 3.7)。当 t → ∞ t \to \infty t 时, e − 4 t → 0 e^{-4t} \to 0 e4t0,因此这个解趋向于原点。我们看到, Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 的公式证实了我们通过观察方向场得到的猜测。这个系统的解确实位于相平面中两条特殊直线上的解。直线解是微分方程系统中最简单的解(仅次于平衡点)。当这些解沿直线在 x y xy xy 平面中移动时,重要的是要记住它们移动的速度取决于它们在直线上的位置。在这个例子中,解以指数速率趋向于 ( 0 , 0 ) (0, 0) (0,0) 或逃逸到 ∞ \infty ,这可以从解的 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 图中看出(见图 3.8 和 3.9)。
在这里插入图片描述图 3.8 3.9 两个直线解的时间响应曲线。
从几何到直线解的代数

好的,以下是替换后的结果:

从几何到直线解的代数

假设系统具有直线解(遗憾的是,并非所有线性系统都有直线解),我们将注意力转向寻找它们的公式。基本的几何观察是,在通过原点的直线解上,向量场必须要么直接指向 ( 0 , 0 ) (0, 0) (0,0),要么直接从 ( 0 , 0 ) (0, 0) (0,0) 指向 ( x , y ) (x, y) (x,y)(见图 3.7)。也就是说,如果 V = ( x , y ) V = (x, y) V=(x,y) 在直线解上,则 ( x , y ) (x, y) (x,y) 处的向量场必须要么与从 ( 0 , 0 ) (0, 0) (0,0) ( x , y ) (x, y) (x,y) 的向量方向相同,要么与之正好相反。

我们现在将这个观察转化为一个可以解的方程,以寻找直线解。对于形式为 d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY 的线性系统,向量场在 V = ( x , y ) V = (x, y) V=(x,y) 处是 A V AV AV,在这个例子中是
A = ( 2 3 0 − 4 ) A = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} A=(2034)

所以我们寻找满足以下条件的向量 V = ( x , y ) V = (x, y) V=(x,y)

A ( x y ) = λ ( x y ) A \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} A(xy)=λ(xy)

这里的 λ \lambda λ 是一个标量。

如果 λ > 0 \lambda > 0 λ>0,则向量场指向与 ( x , y ) (x, y) (x,y) 相同的方向——远离 ( 0 , 0 ) (0, 0) (0,0)。如果 λ < 0 \lambda < 0 λ<0,向量场指向相反的方向——朝向 ( 0 , 0 ) (0, 0) (0,0)

使用向量符号,这个方程可以更简洁地写作:

A V = λ V , AV = \lambda V, AV=λV,

并且需要记住,这个方程是寻找线性系统 d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY 的直线解的关键方程。

在我们的例子中,我们寻找满足 A V = λ V AV = \lambda V AV=λV 的向量 V = ( x , y ) V = (x, y) V=(x,y),这在坐标形式中是:

( 2 3 0 − 4 ) ( x y ) = λ ( x y ) . \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}=\lambda \begin{pmatrix} x \\ y \end{pmatrix}. (2034)(xy)=λ(xy).

展开计算,我们得到:

( 2 x + 3 y − 4 y ) = λ ( x y ) , \begin{pmatrix} 2x + 3y \\ -4y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}, (2x+3y4y)=λ(xy),

我们可以将这个方程重写为:

( 2 x + 3 y − 4 y ) − λ ( x y ) = ( 0 0 ) , \begin{pmatrix} 2x + 3y \\ -4y \end{pmatrix} -\lambda \begin{pmatrix} x \\ y \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \end{pmatrix}, (2x+3y4y)λ(xy)=(00),

这等价于以下的联立方程组:

{ ( 2 − λ ) x + 3 y = 0 ( − 4 − λ ) y = 0 \begin{cases} (2 - \lambda)x + 3y = 0 \\ (-4 - \lambda)y = 0 \end{cases} { (2λ)x+3y=0(4λ)y=0
这个方程组的一个显然解是平凡解 ( x , y ) = ( 0 , 0 ) (x, y) = (0, 0) (x,y)=(0,0)。但我们已经知道原点是该系统的一个平衡解,因此这个解显然不能给出直线解。我们需要的是这个方程组的一个非零解(即至少有一个 x x x y y y 是非零的)。
为了找到一个非零解,重要的是要注意联立方程实际上有三个未知数 x x x y y y λ \lambda λ,实际上我们需要先确定 λ \lambda λ 才能解出 x x x y y y。如果我们将联立方程写成矩阵形式,我们有:
( 2 − λ 3 0 − 4 − λ ) ( x y ) = ( 0 0 ) \begin{pmatrix} 2 - \lambda & 3 \\ 0 & -4 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \end{pmatrix} (2λ034λ)(xy)=(00)
现在我们回忆一下,我们可以使用行列式来判断这样的方程组是否有非平凡解(见第 3.1 节,第 249 页)。这些方程有非平凡解的充要条件是:
det ( 2 − λ 3 0 − 4 − λ ) = 0. \text{det}\begin{pmatrix} 2 - \lambda & 3 \\ 0 & -4 - \lambda \end{pmatrix} = 0. det(2λ034λ)=0.

因此,通过计算这个行列式,我们发现这个系统只有在以下情况下才有非平凡解:

( 2 − λ ) ( − 4 − λ ) − ( 3 ) ( 0 ) = 0. (2 - \lambda)(-4 - \lambda) - (3)(0) = 0. (2λ)(4λ)(3)(0)=0.
这个计算告诉我们,只有当 λ = 2 \lambda = 2 λ=2 λ = − 4 \lambda = -4 λ=4 时,我们的方程才会有非平凡解。其他值的 λ \lambda λ 不会产生直线解。(顺便提一下,回忆一下我们的两个直线解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 涉及形式为 e 2 t e^{2t} e2t e − 4 t e^{-4t} e4t 的指数函数。稍后我们将看到, λ = 2 \lambda = 2 λ=2 λ = − 4 \lambda = -4 λ=4 在指数中出现并非偶然。)
如果 λ = − 4 \lambda = -4 λ=4,那么联立方程组变为:
{

  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值