MATH34011CourseWork

On Branch Cut Problem in Complexity Function

一、Question:

The function f ( z ) f(z) f(z) is given by
f ( z ) = z p ( z − 3 ) q ( z + 3 ) r f(\mathcal{z})=\mathcal{z}^{p}(z-3)^{q}(\mathcal{z}+\mathcal{3})^{r} f(z)=zp(z3)q(z+3)r
where p , q , r p,q,r p,q,r are real constants (not integers), and the branch of this function is chosen such that
− π < arg ⁡ ( z ) ≤ π          a n d          −    π < a r g ( z ± 3 ) ≤ π . -\pi\lt \arg(z)\leq\pi\;\;\;\;{\mathrm{and}}\;\;\;\;-\;\pi\lt \mathrm{arg}(z\pm3)\leq\pi. π<arg(z)πandπ<arg(z±3)π.
Find the general relation between p , q p,q p,q and r r r which ensures that the only branch cut needed is along the real axis between ± 3. \pm3. ±3.
(Hint 1: you will need to use three sets of polar coordinates, each one based at one of the three points z = − 3 , 0 , + 3. z=-3,0,+3. z=3,0,+3.)
(Hint 2: you will need to think separately about the dierence in f ( z ) f(z) f(z) across the four parts ( − ∞ , − 3 ) , ( − 3 , 0 ) , ( 0 , 3 ) (-\infty ,-3),(-3,0),(0,3) (,3),(3,0),(0,3) and ( 3 , ∞ ) (3,\infty) (3,) of the real axis.)

Also, for the speci c case p = q = r = 1 / 3 p=q=r=1/3 p=q=r=1/3, find the values of
i) f ( x ± i 0 )   f o r   0 < x < + 3 , f(x\pm i0){\mathrm{~for~}}0\lt x\lt +3, f(x±i0) for 0<x<+3,
ii) f ( x ± i 0 )    f o r    − 3 < x < 0 , f(x\pm i0)\;\mathrm{for}\;-3\lt x\lt 0, f(x±i0)for3<x<0, and
iii) the residues of the function g ( z ) = f ( z ) z 2 + 3 g(z)=\frac{f(z)}{z^2+3} g(z)=z2+3f(z).

Ans:
make polar coordinate z = r 1 e i θ 1 , z − 3 = r 2 e i θ 2 , z + 3 = r 3 e i θ 3 z = r_1e^{i\theta_1}, z -3= r_2e^{i\theta_2},z+3= r_3e^{i\theta_3} z=r1eiθ1,z3=r2eiθ2,z+3=r3eiθ3
and rewrite f ( z ) f(z) f(z) as
f ( z ) = ( r 1 e i θ 1 ) p ( r 2 e i θ 2 ) q ( r 3 e i θ 3 ) r = ( r 1 p e i p θ 1 ) ( r 2 q e i q θ 2 ) ( r 3 r e i r θ 3 ) f(z)=(r_1e^{i\theta_1})^{p}(r_2e^{i\theta_2})^{q}( r_3e^{i\theta_3})^{r} =(r_1^{p}e^{ip\theta_1})(r_2^{q}e^{iq\theta_2})( r_3^{r}e^{ir\theta_3}) f(z)=(r1eiθ1)p(r2eiθ2)q(r3eiθ3)r=(r1peipθ1)(r2qeiqθ2)(r3reirθ3)
= r 1 p r 2 q r 3 r e i ( p θ 1 + q θ 2 + r θ 3 ) =r_1^{p}r_2^{q}r_3^{r}e^{i(p\theta_1+q\theta_2+r\theta_3)} =r1pr2qr3rei(pθ1+qθ2+rθ3)
Now we study the difference in f ( x ± i 0 ) f(x\pm i0) f(x±i0) across the four intervals
i) on interval ( − ∞ , − 3 ) (-\infty, -3) (,3)
f ( x + i 0 ) = r 1 p r 2 q r 3 r e i ( p π + q π + r π ) , f ( x − i 0 ) = r 1 p r 2 q r 3 r e − i ( p π + q π + r π ) f(x+ i0)=r_1^{p}r_2^{q}r_3^{r}e^{i(p\pi+q\pi+r\pi)},f(x- i0)=r_1^{p}r_2^{q}r_3^{r}e^{-i(p\pi+q\pi+r\pi)} f(x+i0)=r1pr2qr3rei(pπ+qπ+rπ),f(xi0)=r1pr2qr3rei(pπ+qπ+rπ)
let f ( x + i 0 ) = f ( x − i 0 ) f(x+ i0)=f(x-i0) f(x+i0)=f(xi0) one can deduce
e i ( p π + q π + r π ) = e − i ( p π + q π + r π ) e^{i(p\pi+q\pi+r\pi)}=e^{-i(p\pi+q\pi+r\pi)} ei(pπ+qπ+rπ)=ei(pπ+qπ+rπ) or sin ⁡ ( p π + q π + r π ) = − sin ⁡ ( p π + q π + r π ) \sin(p\pi+q\pi+r\pi)=-\sin(p\pi+q\pi+r\pi) sin(pπ+qπ+rπ)=sin(pπ+qπ+rπ)
sin ⁡ ( p π + q π + r π ) = 0 \sin(p\pi+q\pi+r\pi)=0 sin(pπ+qπ+rπ)=0 or ( p + q + r ) ∈ Z (p+q+r) \in \mathbb{Z} (p+q+r)Z
ii) on interval ( − 3 , 0 ) (-3, 0) (3,0)
f ( x + i 0 ) = r 1 p r 2 q r 3 r e i ( p π + q π ) , f ( x − i 0 ) = r 1 p r 2 q r 3 r e − i ( p π + q π ) f(x+ i0)=r_1^{p}r_2^{q}r_3^{r}e^{i(p\pi+q\pi)},f(x- i0)=r_1^{p}r_2^{q}r_3^{r}e^{-i(p\pi+q\pi)} f(x+i0)=r1pr2qr3rei(pπ+qπ),f(xi0)=r1pr2qr3rei(pπ+qπ)
Under condition ( p + q + r ) ∈ Z (p+q+r) \in \mathbb{Z} (p+q+r)Z, f ( x + i 0 ) ≠ f ( x − i 0 ) f(x+ i0)\neq f(x-i0) f(x+i0)=f(xi0)
iii) on interval ( 0 , 3 ) (0, 3) (0,3)
f ( x + i 0 ) = r 1 p r 2 q r 3 r e i ( q π ) , f ( x − i 0 ) = r 1 p r 2 q r 3 r e − i ( q π ) f(x+ i0)=r_1^{p}r_2^{q}r_3^{r}e^{i(q\pi)},f(x- i0)=r_1^{p}r_2^{q}r_3^{r}e^{-i(q\pi)} f(x+i0)=r1pr2qr3rei(qπ),f(xi0)=r1pr2qr3rei(qπ)
Similar, under condition ( p + q + r ) ∈ Z (p+q+r) \in \mathbb{Z} (p+q+r)Z, f ( x + i 0 ) ≠ f ( x − i 0 ) f(x+ i0)\neq f(x-i0) f(x+i0)=f(xi0)
iv) on interval ( 3 , + ∞ ) (3, +\infty) (3,+)
f ( x + i 0 ) = r 1 p r 2 q r 3 r e i 0 , f ( x − i 0 ) = r 1 p r 2 q r 3 r e − i 0 f(x+ i0)=r_1^{p}r_2^{q}r_3^{r}e^{i0},f(x- i0)=r_1^{p}r_2^{q}r_3^{r}e^{-i0} f(x+i0)=r1pr2qr3rei0,f(xi0)=r1pr2qr3rei0
Under condition ( p + q + r ) ∈ Z (p+q+r) \in \mathbb{Z} (p+q+r)Z, f ( x + i 0 ) ≡ f ( x − i 0 ) f(x+ i0) \equiv f(x-i0) f(x+i0)f(xi0)
Therefore, ( p + q + r ) ∈ Z (p+q+r) \in \mathbb{Z} (p+q+r)Z ensures that the only branch cut needed is along the real axis between − 3 , 3 -3, 3 3,3.

  • 30
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值