微分方程(Blanchard Differential Equations 4th)中文版Section3.1

3.1 PROPERTIES OF LINEAR SYSTEMS AND THE LINEARITY PRINCIPLE(线性系统问题与线性算子原理)

在第2章中,我们专注于研究微分方程组的定性和数值方法。之所以这样做,是因为我们很少能找到具有两个或更多个因变量的系统的明确解公式。唯一的例外是线性系统。在本章中,我们展示如何利用向量场的代数和几何形式来得出自治线性系统的一般解。在此过程中,我们发现理解线性系统的定性行为比找到其一般解要容易得多。对线性系统定性行为的描述引出了这些系统的分类方案,这在实际应用中特别有用。我们还继续研究线性系统的模型,特别是阻尼谐振子。
在本章中,我们将探讨最简单类型的微分方程组——自治线性系统。线性系统本身非常重要,同时也是研究非线性系统的先发工具。我们将根据其定性行为对线性系统进行分类,甚至可以给出解的公式。在本章中,我们反复使用两个模型来说明我们建立的方法。其中一个是谐振子,它是所有二阶方程中最重要的模型。我们在第2.1节和第2.3节中推导出了这个模型。现在,利用本章的方法,我们可以对所有可能的参数值给出其解的完整描述。另一个模型是一个人为设计的模型,用来说明平面线性系统中可能出现的所有情况。请仔细研究我们的分析,但不要基于此投资任何资金。

谐波振荡器

谐振子是一个模型,用于描述(除其他方面外)连接在弹簧上的质量块的运动。弹簧提供一个遵循胡克定律的恢复力,唯一考虑的其他力是阻尼力。设 y ( t ) y(t) y(t) 为质量块在时间 t t t 的位置,其中 y = 0 y = 0 y=0 对应于弹簧的静止位置。将牛顿运动定律(力 = 质量 × 加速度),应用于质量-弹簧系统时,将产生以下二阶微分方程:
− k y − b d y d t = m d 2 y d t 2 , -ky - b \frac{dy}{dt} = m \frac{d^2 y}{dt^2}, kybdtdy=mdt2d2y,

其中 m m m 是质量, k k k 是弹簧常数, b b b 是阻尼系数。左侧的 − k y -ky ky 项来自胡克定律,而 − b d y d t -b \frac{dy}{dt} bdtdy 项则是来自阻尼的力(见第2.3节,第184页)。这个二阶方程通常写为:

m d 2 y d t 2 + b d y d t + k y = 0. m \frac{d^2 y}{dt^2} + b \frac{dy}{dt} + ky = 0. mdt2d2y+bdtdy+ky=0.
如同我们在第2.1节和第2.3节所做的那样,可令 v = d y d t v = \frac{dy}{dt} v=dtdy t t t 时刻的速度,将这个方程转换为线性系统。我们得到:

{ d y d t = v , d v d t = − k m y − b m v . \left\{ \begin{align*} &\frac{dy}{dt} = v,\\ &\frac{dv}{dt} = -\frac{k}{m} y - \frac{b}{m} v. \end{align*} \right. dtdy=vdtdv=mkymbv.

注意, d y d t \frac{dy}{dt} dtdy d v d t \frac{dv}{dt} dtdv 线性地依赖于 y y y v v v。正如我们将看到的,解的行为取决于参数 m m m k k k b b b 的值。

两杯咖啡模型

谐振子并未展示出本章中我们将遇到的所有可能行为,因此我们介绍以下微观经济学中的一个传闻模型。

在撰写完微分方程教科书后,Paul 和 Bob 都决定在校园附近开设小咖啡馆。“Paul’s High Test Coffee”和“Bob’s Gourmet Tea”在同一条街上开业,很快,Paul 和 Bob 开始担心彼此的咖啡馆对对方的影响。两家饮品店如此接近,可能会使他们所在的街区成为学生们更受欢迎的去处。另一方面,这两家咖啡馆可能会为了有限的口渴顾客而竞争。Paul 和 Bob 为此争论不休,直到他们厌倦了争论,决定聘请他们以前的同事、著名的数学家 Glen 来解决这个问题。Glen 决定为两家咖啡馆的利润关系建立一个微分方程模型。回忆起他从 Paul 和 Bob 那里学到的一切,Glen 从最简单的模型开始,提出了以下系统。
设:
x ( t ) = Paul’s 咖啡馆在时间  t  的日利润 ; x(t) = \text{Paul's 咖啡馆在时间 } t \text{ 的日利润}; x(t)=Paul’s 咖啡馆在时间 t 的日利润;
y ( t ) = Bob’s 咖啡馆在时间  t  的日利润。 y(t) = \text{Bob's 咖啡馆在时间 } t \text{ 的日利润}。 y(t)=Bob’s 咖啡馆在时间 t 的日利润

也就是说,如果 x ( t ) > 0 x(t) > 0 x(t)>0,则 Paul’s 咖啡馆在赚钱,但如果 x ( t ) < 0 x(t) < 0 x(t)<0,则 Paul’s 咖啡馆在亏钱。由于目前还没有关于每家咖啡馆的利润如何影响另一家利润变化的确凿信息,Glen 制定了允许每家咖啡馆影响另一家的最简单的模型——线性模型。系统如下:
{ d x d t = a x + b y , d y d t = c x + d y . \left\{ \begin{align*} &\frac{dx}{dt} = ax + by,\\ &\frac{dy}{dt} = cx + dy. \end{align*} \right. dtdx=ax+bydtdy=cx+dy.

其中 a a a b b b c c c d d d 是参数。Paul 的利润变化率依赖于 Paul 自身的利润和 Bob 的利润(且没有其他因素)。同样的假设适用于 Bob 的利润。在第5章中我们将看到,只要两家咖啡馆都接近盈亏平衡点,使用这种形式的模型通常是合理的。我们目前还不能使用这个模型来预测未来的利润,因为我们不知道参数 a a a b b b c c c d d d 的值。然而,我们可以对参数符号和大小的意义有一个基本的理解。例如,考虑参数 a a a。它衡量 Paul 的利润对其利润变化率 d x d t \frac{dx}{dt} dtdx 的影响。假设 a a a 是正的。如果 Paul 在赚钱,则 x > 0 x > 0 x>0,因此 a x > 0 ax > 0 ax>0 a x ax ax 项对 d x d t \frac{dx}{dt} dtdx 有正贡献,因此 Paul 在这种情况下会赚更多的钱。换句话说,Paul 希望当 x > 0 x > 0 x>0 a > 0 a > 0 a>0。另一方面,盈利( x > 0 x > 0 x>0)可能对 Paul 的利润有负面影响。(例如,咖啡馆可能会过于拥挤,顾客可能会去别处。)在这种情况下,利润会减少,在这种假设下,参数 a a a 在我们的模型中应该是负的。参数 b b b 衡量 Bob 的利润对 Paul 利润变化率的影响。如果 b > 0 b > 0 b>0 且 Bob 赚钱( y > 0 y > 0 y>0),则 Paul 的利润也会受益,因为 b y by by 项对 d x d t \frac{dx}{dt} dtdx 有正贡献。另一方面,如果 b < 0 b < 0 b<0,当 Bob 赚钱( y > 0 y > 0 y>0)时,Paul 的利润会受到损害。我们可以将 b < 0 b < 0 b<0 理解为 Bob 从 Paul 那里抢走顾客的衡量标准。类似地,Paul 的利润和 Bob 的利润都会影响 Bob 利润的变化率,参数 c c c d d d 相对于 d y d t \frac{dy}{dt} dtdy 有类似的解释。这个模型假设只有两家咖啡馆的利润会影响各自利润的变化。这些假设显然是过于简化的。然而,这个模型为我们提供了一个简单的情况,可以用来解释各种线性系统的解。
在图3.1中,我们绘制了系统

{ d x d t = a x + b y , d y d t = c x + d y . \left\{ \begin{align*} &\frac{dx}{dt} = ax + by,\\ &\frac{dy}{dt} = cx + dy. \end{align*} \right. dtdx=ax+bydtdy=cx+dy.

的相图,假设 a = d = 0 a = d = 0 a=d=0 b = 1 b = 1 b=1 c = − 1 c = -1 c=1,结果得到的是圆形解曲线。在图3.2中,我们考虑 a = − 1 a = -1 a=1 b = 4 b = 4 b=4 c = − 3 c = -3 c=3 d = − 1 d = -1 d=1 的情况。在这种情况下,解曲线螺旋向原点靠近。
在这里插入图片描述图3.2表明,利润在震荡的同时趋向于点 ( 0 , 0 ) (0, 0) (0,0),即两家咖啡馆的盈亏平衡点。对应的 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 图形也展示了这些行为(见图3.3和图3.4)。正如我们将看到的,根据参数 a a a b b b c c c d d d 的不同值,这个模型还存在许多其他可能的相图。在本章中,我们将开发处理所有可能情况的技术。
在这里插入图片描述

线性系统的矩阵表示

在本章中,我们主要考虑如下形式的微分方程组:

{ d x d t = a x + b y d y d t = c x + d y , \left\{ \begin{align*} &\frac{dx}{dt} = ax + by\\ &\frac{dy}{dt} = cx + dy, \end{align*} \right. dtdx=ax+bydtdy=cx+dy

其中 a a a b b b c c c d d d 是常数(可能为 0)。这样的系统称为常系数线性系统。常数 a a a b b b c c c d d d 是这些系统的系数。无论是谐振子模型还是咖啡馆的模型,都是这种形式的系统,只是依赖变量和系数的名称不同。

最重要的形容词——“线性”——指的是 d x d t \frac{dx}{dt} dtdx d y d t \frac{dy}{dt} dtdy 的方程仅涉及依赖变量的一次幂。换句话说,它们是 x x x y y y 的线性函数。由于系数 a a a b b b c c c d d d 是常数,这类系统也是自治的,因此我们知道相平面上的不同解曲线不会相交。这些系统有两个依赖变量,因此我们称它们为平面或二维系统。由于“二维、常系数线性系统”这个称呼过于冗长,我们通常只称这些系统为平面线性系统,甚至仅称为线性系统。请注意,这些系统是我们在第1章中讨论的齐次常系数一阶线性方程 d x d t = a x \frac{dx}{dt} = ax dtdx=ax 的两变量推广(见第6页和第112页)。

我们可以使用向量和矩阵表示法来更有效地表达这个系统。设 A A A 为“2×2”方阵(即 2×2 矩阵):
A = ( a b c d ) , A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, A=(acbd)

Y = ( x y ) Y = \begin{pmatrix} x \\ y \end{pmatrix} Y=(xy)
表示依赖变量的列向量。则 2 × 2 矩阵 A A A 和列向量 Y Y Y 的乘积是列向量 A Y AY AY,表示为
A Y = ( a b c d ) ( x y ) = ( a x + b y c x + d y ) 。 AY = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}= \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}。 AY=(acbd)(xy)=(ax+bycx+dy)
例如:
( 5 2 − 1 3 ) ( 3 4 ) = ( 5 ⋅ 3 + 2 ⋅ 4 − 1 ⋅ 3 + 3 ⋅ 4 ) = ( 23 9 ) \begin{pmatrix} 5 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix}= \begin{pmatrix} 5 \cdot 3 + 2 \cdot 4 \\ -1 \cdot 3 + 3 \cdot 4 \end{pmatrix}= \begin{pmatrix} 23 \\ 9 \end{pmatrix} (5123)(34)=(53+2413+34)=(239)

以及
( ( 2 − a ) π e y ) ( y 2 v ) = ( ( 2 − a ) y + 2 π v e y + 2 y v ) 。 \begin{pmatrix} (2 - a) & \pi \\ e & y \end{pmatrix} \begin{pmatrix} y \\ 2v \end{pmatrix}= \begin{pmatrix} (2 - a)y + 2\pi v \\ ey + 2yv \end{pmatrix}。 ((2a)eπy)(y2v)=((2a)y+2πvey+2yv)
如第2章所述,如果 x x x y y y 是依赖变量,那么我们可以写作
Y ( t ) = ( x ( t ) y ( t ) ) Y(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} Y(t)=(x(t)y(t))

d Y d t = ( d x d t d y d t ) \frac{dY}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix} dtdY=(dtdxdtdy)
使用这种矩阵表示法,我们可以将二维线性系统
{ d x d t = a x + b y d y d t = c x + d y , \left\{ \begin{align*} &\frac{dx}{dt} = ax + by\\ &\frac{dy}{dt} = cx + dy, \end{align*} \right. dtdx=ax+bydtdy=cx+dy
写为
d Y d t = ( d x d t d y d t ) = ( a x + b y c x + d y ) = ( a b c d ) ( x y ) , \frac{dY}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}= \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, dtdY=(dtdxdtdy)=(ax+bycx+dy)=(acbd)(xy)
或更简洁地表示为
d Y d t = A Y , \frac{dY}{dt} = AY, dtdY=AY
其中
A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd)

Y = ( x y ) 。 Y = \begin{pmatrix} x \\ y \end{pmatrix}。 Y=(xy)
该系统的系数矩阵 A A A 称为系数矩阵。
矩阵表示法的一个优势是它帮助我们看清一阶线性系统与一阶线性方程之间的相似性。使用矩阵也提供了一些非常有用的代数工具,我们将在本章中利用这些工具。

向量表示法可以扩展到包括任意数量 n n n 个因变量 y 1 , y 2 , … , y n y_1, y_2, \ldots, y_n y1,y2,,yn 的系统。具有常系数的线性系统为:

d y 1 d t = a 11 y 1 + a 12 y 2 + ⋯ + a 1 n y n \frac{dy_1}{dt} = a_{11} y_1 + a_{12} y_2 + \cdots + a_{1n} y_n dtdy1=a11y1+a12y2++a1nyn
d y 2 d t = a 21 y 1 + a 22 y 2 + ⋯ + a 2 n y n \frac{dy_2}{dt} = a_{21} y_1 + a_{22} y_2 + \cdots + a_{2n} y_n dtdy2=a21y1+a22y2++a2nyn
⋮ \vdots
d y n d t = a n 1 y 1 + a n 2 y 2 + ⋯ + a n n y n \frac{dy_n}{dt} = a_{n1} y_1 + a_{n2} y_2 + \cdots + a_{nn} y_n dtdyn=an1y1+an2y2++annyn

在这种情况下,这个系统的系数是 a 11 , a 12 , … , a n n a_{11}, a_{12}, \ldots, a_{nn} a11,a12,,ann。设

Y = ( y 1 y 2 ⋮ y n ) Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} Y= y1y2yn

因此

d Y d t = ( d y 1 d t d y 2 d t ⋮ d y n d t ) \frac{dY}{dt} = \begin{pmatrix} \frac{dy_1}{dt} \\ \frac{dy_2}{dt} \\ \vdots \\ \frac{dy_n}{dt} \end{pmatrix} dtdY= dtdy1dtdy2dtdyn

系数矩阵是 n × n n \times n n×n 矩阵

A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} A= a11a21an1a12a22an2a1na2nann

我们有

d Y d t = A Y = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ) ( y 1 y 2 ⋮ y n ) = ( a 11 y 1 + a 12 y 2 + ⋯ + a 1 n y n a 21 y 1 + a 22 y 2 + ⋯ + a 2 n y n ⋮ a n 1 y 1 + a n 2 y 2 + ⋯ + a n n y n ) \frac{dY}{dt} = AY = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}= \begin{pmatrix} a_{11} y_1 + a_{12} y_2 + \cdots + a_{1n} y_n \\ a_{21} y_1 + a_{22} y_2 + \cdots + a_{2n} y_n \\ \vdots \\ a_{n1} y_1 + a_{n2} y_2 + \cdots + a_{nn} y_n \end{pmatrix} dtdY=AY= a11a21an1a12a22an2a1na2nann y1y2yn = a11y1+a12y2++a1nyna21y1+a22y2++a2nynan1y1+an2y2++annyn

矩阵表示法的优势

  1. 简洁的表示:矩阵表示法将多个微分方程浓缩为一个方程,使处理和分析变得更容易。

  2. 代数工具:矩阵使得使用各种代数技术成为可能,如矩阵乘法、逆矩阵和特征值分析,这些在求解微分方程时非常有用。

  3. 清晰:矩阵表示法清楚地展示了每个因变量如何通过系数矩阵相互关联,突出显示了系统的结构。

  4. 推广性:它可以轻松扩展到任意数量的因变量系统,使其在工程、物理等领域应用时更具灵活性。

通过使用矩阵表示法,你可以获得强大的工具来分析和解决线性微分方程系统,从而使复杂的问题变得更易处理。
依赖变量的数量称为系统的维度,因此这个系统是n维的。例如,三维系统

d x d t = 2 x + y \frac{dx}{dt} = \sqrt{2}x + y dtdx=2 x+y
d y d t = z \frac{dy}{dt} = z dtdy=z
d z d t = − x − y + 2 z \frac{dz}{dt} = -x - y + 2z dtdz=xy+2z

可以写为

d Y d t = A Y , \frac{dY}{dt} = AY, dtdY=AY,

其中

Y = ( x y z ) Y = \begin{pmatrix} x \\ y \\ z \end{pmatrix} Y= xyz

A = ( 2 1 0 0 0 1 − 1 − 1 2 ) . A = \begin{pmatrix} \sqrt{2} & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 2 \end{pmatrix}. A= 2 01101012 .

在本文中,我们主要研究平面或二维系统。然而,熟悉线性代数的读者会认识到,我们讨论的许多概念可以不加修改或仅进行少量修改就能应用于更高维度的系统。

线性系统与其他微分方程系统类似,只是更简单。第2章的所有方法都适用于线性系统,我们使用这些方法来理解相关的向量场、方向场以及解的图形。此外,由于线性系统在代数上相对简单,我们有理由希望仅通过系数就能“读出”解的行为。也就是说,如果我们给定平面的线性系统

d Y d t = A Y , A = ( a b c d ) \frac{dY}{dt} = AY, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} dtdY=AY,A=(acbd)

其中 A A A 是系数矩阵,那么如果我们知道四个数 a a a, b b b, c c c d d d,我们希望能够完全理解这个系统。事实上,我们甚至可能希望提出一个通解的显式公式。通过这四个数 a a a, b b b, c c c d d d,我们能够给出在 x y xy xy 平面上解的几何描述,描述解的 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 图形,甚至给出通解的公式。因此,我们能够提出解决任意初值问题的显式公式。

线性系统的平衡点与行列式

我们从寻找最简单的解决方案-平衡解决方案开始。回想一下,当且仅当矢量场Y0是零向量时, Y 0 = ( x 0 , y 0 ) \bold{Y}_0 = (x_0,y_0) Y0=(x0,y0) 才是系统的平衡点。由于系统在点 Y 0 \bold{Y}_0 Y0 处的向量场由在该点处求值的微分方程的右手边给出,并且由于
d Y d t = A Y \frac{d \bold{Y}}{dt}=\bold{A}\bold{Y} dtdY=AY
对于线性系统,我们知道在 Y 0 \bold{Y}_0 Y0 处的向量场 F ( Y 0 ) F(\bold{Y}_0) F(Y0) 由以下公式给出:

F ( Y 0 ) = A Y 0 . F(\bold{Y}_0) = \bold{A}\bold{Y}_0. F(Y0)=AY0.

换句话说,在 Y 0 \bold{Y}_0 Y0 处的向量是通过矩阵 A \bold{A} A 与向量 Y 0 \bold{Y}_0 Y0 相乘计算得出的。因此,平衡点是满足以下条件的点 Y 0 \bold{Y}_0 Y0

A Y 0 = ( 0 0 ) . \bold{A}\bold{Y}_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. AY0=(00).

也就是说,

( a b c d ) ( x 0 y 0 ) = ( a x 0 + b y 0 c x 0 + d y 0 ) = ( 0 0 ) . \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} ax_0 + by_0 \\ cx_0 + dy_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. (acbd)(x0y0)=(ax0+by0cx0+dy0)=(00).

以标量形式写出,这个向量方程是一组线性方程组:

{ a x 0 + b y 0 = 0 c x 0 + d y 0 = 0. \begin{cases} ax_0 + by_0 = 0 \\ cx_0 + dy_0 = 0. \end{cases} {ax0+by0=0cx0+dy0=0.

显然, ( x 0 , y 0 ) = ( 0 , 0 ) (x_0, y_0) = (0, 0) (x0,y0)=(0,0) 是这些方程的解。因此,点 Y 0 = ( 0 , 0 ) \bold{Y}_0 = (0, 0) Y0=(0,0) 是一个平衡点,并且常数函数

Y ( t ) = ( 0 , 0 ) 对所有  t \bold{Y}(t) = (0, 0) \quad \text{对所有 } t Y(t)=(0,0)对所有 t

是线性系统的一个解。这个解通常被称为系统的平凡解。(注意,这个计算不依赖于系数 a a a, b b b, c c c d d d 的值。换句话说,每个线性系统在原点都有一个平衡点。)

任何其他平衡点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 也必须满足:

{ a x 0 + b y 0 = 0 c x 0 + d y 0 = 0. \begin{cases} ax_0 + by_0 = 0 \\ cx_0 + dy_0 = 0. \end{cases} {ax0+by0=0cx0+dy0=0.

为了找到它们,假设 a ≠ 0 a \neq 0 a=0。使用第一个方程,我们得到:

x 0 = − b a y 0 . x_0 = -\frac{b}{a} y_0. x0=aby0.

然后,第二个方程变为:

c ( − b a ) y 0 + d y 0 = 0 , c\left(-\frac{b}{a}\right)y_0 + dy_0 = 0, c(ab)y0+dy0=0,

这可以重写为:

( a d − b c ) y 0 = 0. (ad - bc)y_0 = 0. (adbc)y0=0.

因此,要么 y 0 = 0 y_0 = 0 y0=0,要么 a d − b c = 0 ad - bc = 0 adbc=0。如果 y 0 = 0 y_0 = 0 y0=0,则 x 0 = 0 x_0 = 0 x0=0,那么我们再次得到平凡解。因此,线性系统只有在以下情况下才会有非平凡的平衡点:
a d − b c ≠ 0. ad - bc \neq 0. adbc=0.
定义:2 × 2 矩阵
A = ( a b c d ) \bold{A} =\begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd)

的行列式为 det A = a d − b c \text{det} \bold{A} = ad − bc detA=adbc

通过这个定义,我们可以总结出上面计算线性系统平衡点的结果。

定理:如果矩阵 A \bold{A} A 的行列式 det A ≠ 0 \text{det} \bold{A} ≠ 0 detA=0,那么线性系统 d Y d t = A Y \frac{d\bold{Y}}{dt} = \bold{A}\bold{Y} dtdY=AY的唯一平衡点是原点。

上面的论证证明了这个定理,前提是 A \bold{A} A 的左上角元素 a 非零,但这个元素并没有特别之处。通过类似步骤,我们可以得出相同的结果,只要 A \bold{A} A 的至少一个元素非零(参见练习 14)。如果 A \bold{A} A 的所有元素都为零,则平面上的每个点都是平衡点。
例如,假设
A = ( 2 1 − 4 0.3 ) A = \begin{pmatrix} 2 & 1 \\ -4 & 0.3 \end{pmatrix} A=(2410.3)
det ⁡ A = ( 2 ) ( 0.3 ) − ( 1 ) ( − 4 ) = 4.6 \det A =(2)(0.3) − (1)(−4) = 4.6 detA=(2)(0.3)(1)(4)=4.6。由于 det ⁡ A ≠ 0 \det A ≠ 0 detA=0,线性系统 d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY 的唯一平衡点是原点 ( 0 , 0 ) (0, 0) (0,0)

行列式的一个重要性质

行列式是一个在本章中反复出现的量。它的意义通常是它是否为零。如果我们选择四个数值 a 、 b 、 c a、b、c abc d d d 是随机的,那么数字 a d − b c ad-bc adbc 不太可能完全为零。因此,行列式为零的矩阵常被称为异或退化矩阵。
根据我们刚才讨论的定理,我们知道,如果一个线性系统 d Y / d t = A Y dY/dt=AY dY/dt=AY 是非退化的( det ⁡ A ≠ 0 \det A\neq 0 detA=0),那么它只有一个平衡点,即 ( 0 , 0 ) (0, 0) (0,0). 换句话说, ( 0 , 0 ) (0,0) (0,0) 的初始条件对应于解曲线始终位于 ( 0 , 0 ) (0,0) (0,0)。任何满足其他初始条件的解都会随时间变化。
在第3.2节中,我们需要再次使用行列式,因此理解以下内容很重要,这正是我们在证明这个定理时所验证的。对于线性系统,
A Y 0 = 0 AY_0=0 AY0=0
Y 0 Y_0 Y0 为非零向量的充分必要条件是: det ⁡ A = 0. \det A =0. detA=0.

线性原理

线性系统的解具有一些特殊的性质,而这些性质在一般系统中并不存在。这些性质非常有用,我们会反复利用它们。事实上,它们正是我们在分析线性系统时取得成功的原因。

然而,需要提醒的是:在使用这些特殊性质之前,确保所考虑的系统确实是线性系统是非常重要的。这就像在试图倒车出车库之前确保车子在倒车档一样。如果车子在你开始倒车时处于前进档,那可能会造成严重后果。线性系统最重要的性质是线性原理

线性原理

线性原理

假设 d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY 是一个线性微分方程系统。

  1. 如果 Y ( t ) Y(t) Y(t) 是这个系统的一个解,并且 k k k 是任意常数,那么 k Y ( t ) kY(t) kY(t) 也是一个解。
  2. 如果 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 是这个系统的两个解,那么 Y 1 ( t ) + Y 2 ( t ) Y_1(t) + Y_2(t) Y1(t)+Y2(t) 也是一个解。

利用线性原理(也称为叠加原理),我们可以从任何给定的解或一对解中制造出无限多的新解。结合线性原理的两个部分,我们可以得到:如果 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 是系统的解,并且 k 1 k_1 k1 k 2 k_2 k2 是任意常数,那么 k 1 Y 1 ( t ) + k 2 Y 2 ( t ) k_1Y_1(t) + k_2Y_2(t) k1Y1(t)+k2Y2(t) 也是一个解。形式为 k 1 Y 1 ( t ) + k 2 Y 2 ( t ) k_1Y_1(t) + k_2Y_2(t) k1Y1(t)+k2Y2(t) 的解被称为解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t)线性组合。给定两个解,我们可以通过形成原始两个解的线性组合来生成无限多的解。

例如,考虑部分解耦的线性系统:
d Y d t = ( 2 3 0 − 4 ) Y . \frac{dY}{dt} = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} Y. dtdY=(2034)Y.
根据2.4节中,我们有系统的两个特解为:
Y 1 ( t ) = ( e 2 t 0 ) Y_1(t) = \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix} Y1(t)=(e2t0)

Y 2 ( t ) = ( − e − 4 t 2 e − 4 t ) Y_2(t) = \begin{pmatrix} -e^{-4t} \\ 2e^{-4t} \end{pmatrix} Y2(t)=(e4t2e4t)
解曲线 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 如图 3.5 所示。请注意,每一条曲线在相平面 x y xy xy 平面上都是一个线段。解曲线 Y 1 ( t ) Y_1(t) Y1(t) 随着 t → − ∞ t \to -\infty t 趋近于原点的平衡点,而解曲线 Y 2 ( t ) Y_2(t) Y2(t) 随着 t → ∞ t \to \infty t 趋近于原点的平衡点。在下一节中,我们将利用这些解的几何特性,仅通过代数方法来求解这些解。
根据线性原理,任何 k 1 k_1 k1 k 2 k_2 k2 的线性组合
k 1 Y 1 ( t ) + k 2 Y 2 ( t ) = k 1 ( e 2 t 0 ) + k 2 ( − e − 4 t 2 e − 4 t ) = ( k 1 e 2 t − k 2 e − 4 t 2 k 2 e − 4 t ) k_1 Y_1(t) + k_2 Y_2(t) = k_1 \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -e^{-4t} \\ 2e^{-4t} \end{pmatrix} = \begin{pmatrix} k_1 e^{2t} - k_2 e^{-4t} \\ 2k_2 e^{-4t} \end{pmatrix} k1Y1(t)+k2Y2(t)=k1(e2t0)+k2(e4t2e4t)=(k1e2tk2e4t2k2e4t)
也是这个系统的解。
为了说明这一点,我们直接检查 Y 3 ( t ) = − 2 Y 1 ( t ) + 5 Y 2 ( t ) Y_3(t) = -2Y_1(t) + 5Y_2(t) Y3(t)=2Y1(t)+5Y2(t) 是否是一个解。注意

Y 3 ( t ) = − 2 Y 1 ( t ) + 5 Y 2 ( t ) = − 2 ( e 2 t 0 ) + 5 ( − e − 4 t 2 e − 4 t ) = ( − 2 e 2 t − 5 e − 4 t 10 e − 4 t ) , Y_3(t) = -2Y_1(t) + 5Y_2(t) = -2 \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix} + 5 \begin{pmatrix} -e^{-4t} \\ 2e^{-4t} \end{pmatrix} = \begin{pmatrix} -2e^{2t} - 5e^{-4t} \\ 10e^{-4t} \end{pmatrix}, Y3(t)=2Y1(t)+5Y2(t)=2(e2t0)+5(e4t2e4t)=(2e2t5e4t10e4t),

因此

d Y 3 d t = ( − 4 e 2 t + 20 e − 4 t − 40 e − 4 t ) . \frac{dY_3}{dt} = \begin{pmatrix} -4e^{2t} + 20e^{-4t} \\ -40e^{-4t} \end{pmatrix}. dtdY3=(4e2t+20e4t40e4t).

另一方面,计算
A Y 3 = ( 2 3 0 − 4 ) ( − 2 e 2 t − 5 e − 4 t 10 e − 4 t ) = ( 2 ( − 2 e 2 t − 5 e − 4 t ) + 3 ( 10 e − 4 t ) − 4 ( 10 e − 4 t ) ) = ( − 4 e 2 t + 20 e − 4 t − 40 e − 4 t ) . AY_3 = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} -2e^{2t} - 5e^{-4t} \\ 10e^{-4t} \end{pmatrix} = \begin{pmatrix} 2(-2e^{2t} - 5e^{-4t}) + 3(10e^{-4t}) \\ -4(10e^{-4t}) \end{pmatrix} = \begin{pmatrix} -4e^{2t} + 20e^{-4t} \\ -40e^{-4t} \end{pmatrix}. AY3=(2034)(2e2t5e4t10e4t)=(2(2e2t5e4t)+3(10e4t)4(10e4t))=(4e2t+20e4t40e4t).
由于这两个计算结果相同,因此解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 的线性组合 Y 3 ( t ) Y_3(t) Y3(t) 也是一个解。(将来我们不会再重新检查线性原理的结果。)

我们再次强调,解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 的解曲线具有非常特殊和有用的几何属性。它们形成线段的事实并不是一般解曲线的典型特征。实际上,该系统的典型解曲线并不是直线。例如,正如图 3.5 所示,解 Y 1 ( t ) + Y 2 ( t ) Y_1(t) + Y_2(t) Y1(t)+Y2(t) 的解曲线并不直。
在这里插入图片描述图3.5 由叠加原理可知 Y 1 ( t ) + Y 2 ( t ) Y_1(t) + Y_2(t) Y1(t)+Y2(t) 为线性系统的解。

线性原理的验证

为了证明线性原理在一般情况下是成立的,我们首先陈述以下两个矩阵乘法的代数性质:

  1. 如果 A A A 是一个矩阵, Y Y Y 是一个向量,那么对于任意常数 k k k,有
    A ( k Y ) = k A Y . A(kY) = kAY. A(kY)=kAY.

  2. 如果 A A A 是一个矩阵, Y 1 Y_1 Y1 Y 2 Y_2 Y2 是向量,那么
    A ( Y 1 + Y 2 ) = A Y 1 + A Y 2 . A(Y_1 + Y_2) = AY_1 + AY_2. A(Y1+Y2)=AY1+AY2.

我们可以通过直接计算来验证这两个性质对于 2 × 2 2 \times 2 2×2 矩阵和 2 2 2 维向量的正确性。例如,为了验证性质 2,设

A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd)

是一个任意的 2 × 2 2 \times 2 2×2 矩阵, Y 1 Y_1 Y1 Y 2 Y_2 Y2 是任意的向量:

Y 1 = ( x 1 y 1 ) 和 Y 2 = ( x 2 y 2 ) . Y_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \quad \text{和} \quad Y_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}. Y1=(x1y1)Y2=(x2y2).

那么

A ( Y 1 + Y 2 ) = ( a b c d ) ( x 1 + x 2 y 1 + y 2 ) = ( a ( x 1 + x 2 ) + b ( y 1 + y 2 ) c ( x 1 + x 2 ) + d ( y 1 + y 2 ) ) . A(Y_1 + Y_2) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} = \begin{pmatrix} a(x_1 + x_2) + b(y_1 + y_2) \\ c(x_1 + x_2) + d(y_1 + y_2) \end{pmatrix}. A(Y1+Y2)=(acbd)(x1+x2y1+y2)=(a(x1+x2)+b(y1+y2)c(x1+x2)+d(y1+y2)).

进一步计算得到

( a ( x 1 + x 2 ) + b ( y 1 + y 2 ) c ( x 1 + x 2 ) + d ( y 1 + y 2 ) ) = ( a x 1 + a x 2 + b y 1 + b y 2 c x 1 + c x 2 + d y 1 + d y 2 ) . \begin{pmatrix} a(x_1 + x_2) + b(y_1 + y_2) \\ c(x_1 + x_2) + d(y_1 + y_2) \end{pmatrix} = \begin{pmatrix} ax_1 + ax_2 + by_1 + by_2 \\ cx_1 + cx_2 + dy_1 + dy_2 \end{pmatrix}. (a(x1+x2)+b(y1+y2)c(x1+x2)+d(y1+y2))=(ax1+ax2+by1+by2cx1+cx2+dy1+dy2).

这可以进一步分解为

A ( Y 1 + Y 2 ) = ( a x 1 + b y 1 c x 1 + d y 1 ) + ( a x 2 + b y 2 c x 2 + d y 2 ) = A Y 1 + A Y 2 . A(Y_1 + Y_2) = \begin{pmatrix} ax_1 + by_1 \\ cx_1 + dy_1 \end{pmatrix} + \begin{pmatrix} ax_2 + by_2 \\ cx_2 + dy_2 \end{pmatrix} = AY_1 + AY_2. A(Y1+Y2)=(ax1+by1cx1+dy1)+(ax2+by2cx2+dy2)=AY1+AY2.

因此,我们验证了矩阵乘法的这两个代数性质是成立的,这也证明了线性原理的正确性。
并且

A Y 1 + A Y 2 = ( a b c d ) ( x 1 y 1 ) + ( a b c d ) ( x 2 y 2 ) = ( a x 1 + b y 1 c x 1 + d y 1 ) + ( a x 2 + b y 2 c x 2 + d y 2 ) = ( a x 1 + a x 2 + b y 1 + b y 2 c x 1 + c x 2 + d y 1 + d y 2 ) . AY_1 + AY_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} ax_1 + by_1 \\ cx_1 + dy_1 \end{pmatrix} + \begin{pmatrix} ax_2 + by_2 \\ cx_2 + dy_2 \end{pmatrix} = \begin{pmatrix} ax_1 + ax_2 + by_1 + by_2 \\ cx_1 + cx_2 + dy_1 + dy_2 \end{pmatrix}. AY1+AY2=(acbd)(x1y1)+(acbd)(x2y2)=(ax1+by1cx1+dy1)+(ax2+by2cx2+dy2)=(ax1+ax2+by1+by2cx1+cx2+dy1+dy2).

因此,性质 2 得到了验证。性质 1 的验证留给练习(参见练习 30)。

根据这些矩阵乘法的代数性质,我们可以利用标准的微分规则来验证线性原理。假设 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 是方程 d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY 的解;即,假设

d Y 1 d t = A Y 1 和 d Y 2 d t = A Y 2  对于所有  t . \frac{dY_1}{dt} = AY_1 \quad \text{和} \quad \frac{dY_2}{dt} = AY_2 \text{ 对于所有 } t. dtdY1=AY1dtdY2=AY2 对于所有 t.

对于任何常数 k k k,我们有

d ( k Y 1 ) d t = k d Y 1 d t = k A Y 1 = A ( k Y 1 ) , \frac{d(kY_1)}{dt} = k \frac{dY_1}{dt} = kAY_1 = A(kY_1), dtd(kY1)=kdtdY1=kAY1=A(kY1),

所以 k Y 1 ( t ) kY_1(t) kY1(t) 是这个系统的一个解。同时

d ( Y 1 + Y 2 ) d t = d Y 1 d t + d Y 2 d t = A Y 1 + A Y 2 = A ( Y 1 + Y 2 )  对于所有  t . \frac{d(Y_1 + Y_2)}{dt} = \frac{dY_1}{dt} + \frac{dY_2}{dt} = AY_1 + AY_2 = A(Y_1 + Y_2) \text{ 对于所有 } t. dtd(Y1+Y2)=dtdY1+dtdY2=AY1+AY2=A(Y1+Y2) 对于所有 t.

因此, Y 1 ( t ) + Y 2 ( t ) Y_1(t) + Y_2(t) Y1(t)+Y2(t) 也是一个解,这验证了线性原理。我们可以看到矩阵和向量符号的优势。详细列出上述方程中的所有分量将是一个繁琐的练习——事实上,这在本节末尾的练习集中就是一个繁琐的练习(参见练习 30)。

解初值问题

根据线性原理,我们知道,给定两个解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t),我们可以构造出许多更多形式为 k 1 Y 1 ( t ) + k 2 Y 2 ( t ) k_1 Y_1(t) + k_2 Y_2(t) k1Y1(t)+k2Y2(t) 的解,其中 k 1 k_1 k1 k 2 k_2 k2 是任意常数。这类表达式被称为二参数解族,因为我们有两个常数 k 1 k_1 k1 k 2 k_2 k2 可以调整以获得不同的解。我们可以合理地问,这些是否是所有的解,换句话说,是否每一个解都可以表示为这种形式。

为了了解如何使用线性原理解决初值问题,我们回到以下微分方程:

d Y d t = ( 2 3 0 − 4 ) Y . \frac{dY}{dt} = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} Y. dtdY=(2034)Y.

解初值问题

我们之前讨论了这个微分方程:

d Y d t = ( 2 3 0 − 4 ) Y . \frac{dY}{dt} = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} Y. dtdY=(2034)Y.

假设我们想找到这个系统的解 Y ( t ) Y(t) Y(t),使得初值为 Y ( 0 ) = ( 2 − 3 ) Y(0) = \begin{pmatrix} 2 \\ -3 \end{pmatrix} Y(0)=(23)。我们已经知道:

Y 1 ( t ) = ( e 2 t 0 ) Y_1(t) = \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix} Y1(t)=(e2t0)

Y 2 ( t ) = ( − e − 4 t 2 e − 4 t ) Y_2(t) = \begin{pmatrix} -e^{-4t} \\ 2e^{-4t} \end{pmatrix} Y2(t)=(e4t2e4t)

是解。通过直接计算,我们知道:

Y 1 ( 0 ) = ( 1 0 ) Y_1(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} Y1(0)=(10)

Y 2 ( 0 ) = ( − 1 2 ) . Y_2(0) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}. Y2(0)=(12).

因此, Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 都不是初值问题

d Y d t = ( 2 3 0 − 4 ) Y , Y ( 0 ) = ( 2 − 3 ) \frac{dY}{dt} = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} Y, \quad Y(0) = \begin{pmatrix} 2 \\ -3 \end{pmatrix} dtdY=(2034)Y,Y(0)=(23)

的解。但是,线性原理告诉我们,我们可以形成 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 的任何线性组合,并且仍然得到一个解。因此,我们寻找 k 1 k_1 k1 k 2 k_2 k2 使得

k 1 ( 1 0 ) + k 2 ( − 1 2 ) = ( 2 − 3 ) . k_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}. k1(10)+k2(12)=(23).

这个向量方程等同于以下联立方程:

{ k 1 − k 2 = 2 2 k 2 = − 3 \begin{cases} k_1 - k_2 = 2 \\ 2k_2 = -3 \end{cases} {k1k2=22k2=3

第二个方程给出 k 2 = − 3 2 k_2 = -\frac{3}{2} k2=23,因此,第一个方程给出 k 1 = 1 2 k_1 = \frac{1}{2} k1=21。这个计算表明:

1 2 Y 1 ( 0 ) − 3 2 Y 2 ( 0 ) = ( 2 − 3 ) . \frac{1}{2} Y_1(0) - \frac{3}{2} Y_2(0) = \begin{pmatrix} 2 \\ -3 \end{pmatrix}. 21Y1(0)23Y2(0)=(23).

因此,我们考虑函数

Y ( t ) = 1 2 Y 1 ( t ) − 3 2 Y 2 ( t ) = 1 2 ( e 2 t 0 ) − 3 2 ( − e − 4 t 2 e − 4 t ) . Y(t) = \frac{1}{2} Y_1(t) - \frac{3}{2} Y_2(t) = \frac{1}{2} \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} -e^{-4t} \\ 2e^{-4t} \end{pmatrix}. Y(t)=21Y1(t)23Y2(t)=21(e2t0)23(e4t2e4t).

计算得到:

Y ( t ) = ( 1 2 e 2 t + 3 2 e − 4 t − 3 e − 4 t ) . Y(t) = \begin{pmatrix} \frac{1}{2} e^{2t} + \frac{3}{2} e^{-4t} \\ -3 e^{-4t} \end{pmatrix}. Y(t)=(21e2t+23e4t3e4t).

这样,我们得到了满足初值条件的解 Y ( t ) Y(t) Y(t)
这个函数具有正确的初始条件,并且根据线性原理,我们知道它必须是系统的一个解。唯一性定理告诉我们,这就是解决初值问题的唯一函数(见第 2.5 节)。

在这个例子中,我们使用了已经知道的两个解,加上一些算术(而不是微积分),找到了初值问题的解。通过取这两个已知解的适当线性组合,我们能够找到一个具有所需初始条件的解。

也许我们只是碰巧这样。无论我们有什么初始条件,我们是否总能找到适当的 k 1 k_1 k1 k 2 k_2 k2?为了检查这一点,假设我们考虑相同的微分方程和一个任意的初始条件:

d Y d t = ( 2 3 0 − 4 ) Y , Y ( 0 ) = ( x 0 y 0 ) . \frac{dY}{dt} = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} Y, \quad Y(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}. dtdY=(2034)Y,Y(0)=(x0y0).

以及我们开始时的两个解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t)。为了求解初值问题,我们需要找到 k 1 k_1 k1 k 2 k_2 k2,使得

k 1 Y 1 ( 0 ) + k 2 Y 2 ( 0 ) = Y ( 0 ) = ( x 0 y 0 ) . k_1 Y_1(0) + k_2 Y_2(0) = Y(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}. k1Y1(0)+k2Y2(0)=Y(0)=(x0y0).

换句话说,给定任意的 x 0 x_0 x0 y 0 y_0 y0,我们是否总能找到 k 1 k_1 k1 k 2 k_2 k2,使得

k 1 ( 1 0 ) + k 2 ( − 1 2 ) = ( x 0 y 0 ) ? k_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}? k1(10)+k2(12)=(x0y0)?

这个向量方程等同于以下联立方程:

{ k 1 − k 2 = x 0 2 k 2 = y 0 \begin{cases} k_1 - k_2 = x_0 \\ 2k_2 = y_0 \end{cases} {k1k2=x02k2=y0

由于第二个方程非常简单,我们总能给定 x 0 x_0 x0 y 0 y_0 y0 来找到 k 1 k_1 k1 k 2 k_2 k2。我们首先使用第二个方程来找到 k 2 k_2 k2,然后使用这个 k 2 k_2 k2 的值在第一个方程中求解 k 1 k_1 k1

因为我们能够通过 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 的线性组合来解决系统

d Y d t = ( 2 3 0 − 4 ) Y \frac{dY}{dt} = \begin{pmatrix} 2 & 3 \\ 0 & -4 \end{pmatrix} Y dtdY=(2034)Y

的每一个可能的初值问题,我们已经找到了这个系统的一般解。它是二参数解族:

Y ( t ) = k 1 Y 1 ( t ) + k 2 Y 2 ( t ) = k 1 ( e 2 t 0 ) + k 2 ( − e − 4 t 2 e − 4 t ) . Y(t) = k_1 Y_1(t) + k_2 Y_2(t) = k_1 \begin{pmatrix} e^{2t} \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -e^{-4t} \\ 2e^{-4t} \end{pmatrix}. Y(t)=k1Y1(t)+k2Y2(t)=k1(e2t0)+k2(e4t2e4t).

线性无关

注意,在这个例子中,我们使用了线性原理来从两个已知解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 中产生无穷多的解。然后,由于我们能够将一个任意初始条件表示为 Y 1 ( 0 ) Y_1(0) Y1(0) Y 2 ( 0 ) Y_2(0) Y2(0) 的线性组合,我们可以使用 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 来构造一般解。

将任意向量表示为给定向量的线性组合是线性代数中的一个基本主题。在二维情况下,确保任意向量可以表示为给定向量($ (x_1, y_1) $ 和 $ (x_2, y_2) $)的线性组合的关键属性是这些向量不在通过原点的同一条直线上。(注意在前面的例子中,初始条件 ( 1 , 0 ) (1, 0) (1,0) ( − 1 , 2 ) (-1, 2) (1,2) 不在通过原点的同一条直线上——见图 3.6。)我们说两个向量 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) ( x 2 , y 2 ) (x_2, y_2) (x2,y2)线性无关的,如果它们不在通过原点的同一条直线上,或者等价地,如果其中任何一个都不是另一个的倍数。
在这里插入图片描述图3.6 线性无关的两个平面向量

定理

假设 ( x 1 , y 1 ) (x_1, y_1) (x1,y1) ( x 2 , y 2 ) (x_2, y_2) (x2,y2) 是平面上的两个线性无关向量。则对于任意向量 ( x 0 , y 0 ) (x_0, y_0) (x0,y0),存在常数 k 1 k_1 k1 k 2 k_2 k2 使得

k 1 ( x 1 y 1 ) + k 2 ( x 2 y 2 ) = ( x 0 y 0 ) . k_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + k_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}. k1(x1y1)+k2(x2y2)=(x0y0).

两个线性无关的向量可以通过加法和标量乘法组合成平面上的任何其他向量。

注意,方程

k 1 ( x 1 y 1 ) + k 2 ( x 2 y 2 ) = ( x 0 y 0 ) k_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + k_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} k1(x1y1)+k2(x2y2)=(x0y0)

实际上是一个关于 k 1 k_1 k1 k 2 k_2 k2 的两个线性方程的联立系统:

{ x 1 k 1 + x 2 k 2 = x 0 y 1 k 1 + y 2 k 2 = y 0 \begin{cases} x_1 k_1 + x_2 k_2 = x_0 \\ y_1 k_1 + y_2 k_2 = y_0 \end{cases} {x1k1+x2k2=x0y1k1+y2k2=y0

我们给定了 x x x y y y 的值,需要解出 k k k 的值。我们可以通过写出 k 1 k_1 k1 k 2 k_2 k2 的公式来证明存在解。只要这些公式中的分母不为零,解就存在。求解这种形式的方程组涉及到与求解线性系统的平衡点相同的代数,因此,行列式在这里也起到重要作用(见练习 31 和 32)。

通解

前面的例子和定理展示了我们解决每个线性系统的方法。因此,总结讨论是值得的。

定理

假设 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 是线性系统 d Y d t = A Y \frac{dY}{dt} = AY dtdY=AY 的解。如果 Y 1 ( 0 ) Y_1(0) Y1(0) Y 2 ( 0 ) Y_2(0) Y2(0)线性无关的,那么对于任何初始条件 Y ( 0 ) = ( x 0 y 0 ) Y(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} Y(0)=(x0y0),我们可以找到常数 k 1 k_1 k1 k 2 k_2 k2 使得 k 1 Y 1 ( t ) + k 2 Y 2 ( t ) k_1 Y_1(t) + k_2 Y_2(t) k1Y1(t)+k2Y2(t) 是初值问题

d Y d t = A Y , Y ( 0 ) = ( x 0 y 0 ) \frac{dY}{dt} = AY, \quad Y(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} dtdY=AY,Y(0)=(x0y0)

的解。在这种情况下,我们称两个参数族 k 1 Y 1 ( t ) + k 2 Y 2 ( t ) k_1 Y_1(t) + k_2 Y_2(t) k1Y1(t)+k2Y2(t),其中 k 1 k_1 k1 k 2 k_2 k2 是任意常数,为系统的通解。

根据系统的存在唯一性定理,我们知道每个线性系统的初值问题有唯一解。给定任何两个线性系统的解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t),只要 Y 1 ( 0 ) Y_1(0) Y1(0) Y 2 ( 0 ) Y_2(0) Y2(0) 是线性无关的,我们就可以通过形成两个参数族 k 1 Y 1 ( t ) + k 2 Y 2 ( t ) k_1 Y_1(t) + k_2 Y_2(t) k1Y1(t)+k2Y2(t) 来得到系统的通解。通过调整常数 k 1 k_1 k1 k 2 k_2 k2,我们可以得到满足任何给定初始条件的解。

这真是一个了不起的进展。我们现在知道,为了找到线性系统的所有解,我们只需要找到两个具有线性无关初始条件的特定解。两个解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t),如果 Y 1 ( 0 ) Y_1(0) Y1(0) Y 2 ( 0 ) Y_2(0) Y2(0) 是线性无关的,就称为线性系统的线性无关解。(在练习中我们会看到,如果 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 是线性系统的解,并且在任意特定的 t 0 t_0 t0 上,向量 Y 1 ( t 0 ) Y_1(t_0) Y1(t0) Y 2 ( t 0 ) Y_2(t_0) Y2(t0) 是线性无关的,那么 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t) 在所有 t t t 值上也是线性无关的——见练习 35。)下一步是找到一个通用方法来得到两个线性无关的解 Y 1 ( t ) Y_1(t) Y1(t) Y 2 ( t ) Y_2(t) Y2(t)。第 3.2 节和第 3.4 节的大部分讨论涉及到实现这一目标的技术。

无阻尼谐振子

在第 2.1 节中,我们研究了无阻尼谐振子的二阶微分方程:

d 2 y d t 2 = − y . \frac{d^2 y}{dt^2} = -y. dt2d2y=y.

我们猜测 y 1 ( t ) = cos ⁡ ( t ) y_1(t) = \cos(t) y1(t)=cos(t) 是一个解,然后通过验证来检查我们的猜测:

d 2 y 1 d t 2 + y 1 = d 2 ( cos ⁡ ( t ) ) d t 2 + cos ⁡ ( t ) = − cos ⁡ ( t ) + cos ⁡ ( t ) = 0. \frac{d^2 y_1}{dt^2} + y_1 = \frac{d^2 (\cos(t))}{dt^2} + \cos(t) = -\cos(t) + \cos(t) = 0. dt2d2y1+y1=dt2d2(cos(t))+cos(t)=cos(t)+cos(t)=0.

因此, y 1 ( t ) = cos ⁡ ( t ) y_1(t) = \cos(t) y1(t)=cos(t) 确实是该方程的一个解。
类似地,我们可以检查 y 2 ( t ) = sin ⁡ ( t ) y_2(t) = \sin(t) y2(t)=sin(t) 是否也是一个解。现在,我们已经掌握了线性原理,我们可以进一步讨论。

二阶方程可以转换为一阶系统:

d y d t = v \frac{dy}{dt} = v dtdy=v
d v d t = − y , \frac{dv}{dt} = -y, dtdv=y,

这是一个线性系统。使用向量表示法,我们写作:

Y ( t ) = ( y ( t ) v ( t ) ) , Y(t) = \begin{pmatrix} y(t) \\ v(t) \end{pmatrix}, Y(t)=(y(t)v(t)),

系统可以表示为:

d Y d t = ( 0 1 − 1 0 ) Y . \frac{dY}{dt} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} Y. dtdY=(0110)Y.

请记住,向量值函数 Y ( t ) Y(t) Y(t) 的第二个分量是 v = d y d t v = \frac{dy}{dt} v=dtdy。我们可以利用解 y 1 ( t ) y_1(t) y1(t) 来形成向量值函数:

Y 1 ( t ) = ( y 1 ( t ) v 1 ( t ) ) = ( cos ⁡ ( t ) − sin ⁡ ( t ) ) . Y_1(t) = \begin{pmatrix} y_1(t) \\ v_1(t) \end{pmatrix} = \begin{pmatrix} \cos(t) \\ -\sin(t) \end{pmatrix}. Y1(t)=(y1(t)v1(t))=(cos(t)sin(t)).

注意到 Y 1 ( t ) Y_1(t) Y1(t) 是系统的一个解,因为:

d Y 1 d t = ( − sin ⁡ ( t ) − cos ⁡ ( t ) ) , \frac{dY_1}{dt} = \begin{pmatrix} -\sin(t) \\ -\cos(t) \end{pmatrix}, dtdY1=(sin(t)cos(t)),

而:

( 0 1 − 1 0 ) Y 1 ( t ) = ( 0 1 − 1 0 ) ( cos ⁡ ( t ) − sin ⁡ ( t ) ) = ( − sin ⁡ ( t ) − cos ⁡ ( t ) ) . \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} Y_1(t) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \cos(t) \\ -\sin(t) \end{pmatrix} = \begin{pmatrix} -\sin(t) \\ -\cos(t) \end{pmatrix}. (0110)Y1(t)=(0110)(cos(t)sin(t))=(sin(t)cos(t)).

类似地,解 y 2 ( t ) = sin ⁡ ( t ) y_2(t) = \sin(t) y2(t)=sin(t) 对应的一阶系统解是:

Y 2 ( t ) = ( sin ⁡ ( t ) cos ⁡ ( t ) ) , Y_2(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}, Y2(t)=(sin(t)cos(t)),

这也是一阶系统的解。(使用矩阵表示法进行双重检查是一个好习惯。)

我们有一个一阶线性系统,包含两个相关变量。因此,我们需要两个线性无关的解来获得一般解。在 t = 0 t = 0 t=0 时,

Y 1 ( 0 ) = ( 1 0 ) Y_1(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} Y1(0)=(10)

Y 2 ( 0 ) = ( 0 1 ) . Y_2(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. Y2(0)=(01).
也就是说, Y 1 ( 0 ) Y_1(0) Y1(0) 位于 y y y 轴上,而 Y 2 ( 0 ) Y_2(0) Y2(0) 位于 v v v 轴上。因此,这些向量是线性无关的,第一阶系统的一般解是:

Y ( t ) = k 1 ( cos ⁡ ( t ) − sin ⁡ ( t ) ) + k 2 ( sin ⁡ ( t ) cos ⁡ ( t ) ) . Y(t) = k_1 \begin{pmatrix} \cos(t) \\ -\sin(t) \end{pmatrix} + k_2 \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}. Y(t)=k1(cos(t)sin(t))+k2(sin(t)cos(t)).

回忆一下,第一阶系统的解 Y ( t ) Y(t) Y(t) 实际上是形式为 Y ( t ) = ( y ( t ) , v ( t ) ) Y(t) = (y(t), v(t)) Y(t)=(y(t),v(t)) 的函数,其中 y ( t ) y(t) y(t) 是原始二阶方程的解,我们可以使用 Y ( t ) Y(t) Y(t) 的第一个分量来得到原始二阶方程的一般解。结果是:

y ( t ) = k 1 cos ⁡ ( t ) + k 2 sin ⁡ ( t ) . y(t) = k_1 \cos(t) + k_2 \sin(t). y(t)=k1cos(t)+k2sin(t).

在第 3.6 节中,我们将讨论一种更直接的方法来找到像这样的一般解的二阶方程,但重要的是要认识到线性原理也适用于像阻尼谐振子方程这样的“线性”二阶方程。

  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值