机器学习降维

问题一:机器学习中什么是维度?

  • 图像中每个像素点(每一个特征点)就是一个维度
  • 假如用矩阵表示对象,对象的属性就是他的维度
  • 数组中ndim的返回就是维度

问题二:在哪里用到维度?

  1.  特征维度过大,可能会导致过拟合时
  2.  某些样本数据不足的情况(缺失值很多)
  3.  特征间的相关性比较大时

问题三:解决过拟合的方法都是如何降维的?

  1. 正则化:没有减少特征的数量但是减少了特征的数量级(计算的值变小了)
  2. dropout:随机减少规定比例的特征
  3. early stopping:减少计算次数

 

 

在彩色图像/RGB图像中,图像是一个三维矩阵,如4003003,其中400表示列数,300表述行数,3代表三个分量,也就是R,G,B。

降维中维是指特征,几维就是几个特征

 

 

PCA的主要适用场景:

(1)非监督式的数据集

它是一种非监督式的降维方法,因此适用于不带有标签的数据集,对于带有标签的可以采用LDA

(2)根据方差自主控制特征数量

最大的主成分的数量会小于或等于特征的数量,即,PCA可以输出全部的特征,具体取决于选择特征中解释的方差比例

(3)更少的正则化处理

选择较多的主成分将导致更少的平滑,因为能保留很多特征,减少正则化

(4)数据量较大的数据集

数据量大指数据记录多和维度多两种情况,PCA对大型数据集的处理效率高

(5)数据分布是位于相同平面上,数据中存在线性结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪里摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值